
Master of Technology (Power Electronics)

CURRICULUM

(Effective from 2024 - 25 Onwards)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY TIRUCHIRAPPALLI - 620 015, INDIA

VISION OF THE INSTITUTE

To be a university globally trusted for technical excellence where learning and research integrate to sustain society and industry.

MISSION OF THE INSTITUTE

To offer undergraduate, postgraduate, doctoral and modular programmes in multidisciplinary / inter-disciplinary and emerging areas.

To create a converging learning environment to serve a dynamically evolving society.

To promote innovation for sustainable solutions by forging global collaborations with academia and industry in cutting-edge research.

To be an intellectual ecosystem where human capabilities can develop holistically.

VISION OF THE DEPARTMENT

To be a centre of excellence in Electrical Energy Systems.

MISSION OF THE DEPARTMENT

Empowering students and professionals with state-of-art knowledge and Technological skills.

Enabling Industries to adopt effective solutions in Energy areas through research and consultancy.

Evolving appropriate sustainable technologies for rural needs.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The major objectives of the M.Tech. programme in Power Electronics are to equip the students with adequate knowledge and skills in Power Electronics Engineering and to prepare them for the following career options:

- **PEO1** Research programmes in Power Electronics and related areas
- **PEO2** Employment in R & D organisations related to sustainable technologies
- **PEO3** To work in power electronic circuit design and fabrication industries
- **PEO4** Faculty positions in reputed institutions

PROGRAMME OUTCOMES

A student who has undergone M.Tech. programme in Power Electronics (PE) will have the following:

PO1 An ability to independently carry out research /investigation and development work to solve practical problems
 PO2 An ability to write and present a substantial technical report/document
 Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.

CURRICULUM STRUCTURE

M.Tech. (POWER ELECTRONICS)

Components	No. of Courses	No. of Credits
Programme Core (PC)	3/ semester (6/year)	42
Programme Elective (PE)	3/ semester (6/year)	42
Essential Laboratory Requirements (ELR)	3/year	6
Internship / Industrial Training / Academic Attachment (I/A)	1	2
Open Elective (OE) / Online Course (OC)*	2	6
Project Phase-I	1	12
Project Phase-II	1	12
Total Credits		80

* Open Elective (OE) / Online Course (OC) can be completed between I – IV semester

CURRICULUM

The total minimum credits for completing the M.Tech. programme in Power Electronics is 80.

SI. No.	Code	Course of Study	Credit
1	MA603	Advanced Engineering Mathematics	4
2	EE651	Power Converters	4
3	EE653	Linear and Non-Linear System Theory	4
4		Programme Elective I	3
5		Programme Elective II	3
6		Programme Elective III / Online (NPTEL)	3
7	EE657	Design and Simulation of Power Electronic Circuit Laboratory	2
8	EE659	Power Electronics Systems Laboratory	2
		Total	25

SEMESTER I

SEMESTER II

SI. No.	Code	Course of Study	Credit
1	EE652	Switched Mode Power Conversion	4
2	EE654	Power Electronic Drives	4
3	EE656	Industrial Control Electronics	4
4		Programme Elective IV	3
5		Programme Elective V	3
6		Programme Elective VI / Online (NPTEL)	3
7	EE658	Power Converters and Drives Laboratory	2
		Total	23

SUMMER TERM (Evaluation in the III semester)

Code	Course of Study	Credit
EE713	Internship / Industrial Training / Academic Attachment (I/A) (6 weeks to 8 weeks)	2

SEMESTER III

Code	Course of Study	Credit
EE709	Project Work - Phase I	12
	Total	12

SEMESTER IV

Code	Course of Study	Credit
EE710	Project Work - Phase II	12
	Total	

OPEN ELECTIVES

(Open Elective (OE) / Online Course (OC) can be completed between I – IV semester)

Code	Course of Study	Credit
	Open Elective I	3
	Open Elective II	3
	Total	6

LIST OF OPEN ELECTIVES

SI. No.	Code	Course Title	Credit
1	EE687	Electric and Hybrid Vehicles	3
2	EE712	Home Energy Management System	3

Note:

- Department will give the list of recommended online courses for PE and OE in every session.
- Students shall opt the online courses from the list of recommended courses by any department of the institute as open elective.
- MICROCREDITS (MC) (Students can opt 3 courses of 1 credit (4 weeks) each as microcredits instead of 1 OE/OC)

LIST OF PROGRAMME ELECTIVES

SI.	Course	0 – – – – –	
No.	Code	Course Title	Credit
1.	EE661	Flexible AC Transmission System	3
2.	EE662	High Voltage DC Transmission	3
3.	EE664	Advanced Digital Signal Processing	3
4.	EE665	Advanced Digital System Design	3
5.	EE667	Neural Networks and Deep Learning	3
6.	EE668	Digital Controllers in Power Electronics Applications	3
7.	EE669	Computer Networking	3
8.	EE670	Electrical Distribution Systems	3
9.	EE671	Fuzzy Logic Control Systems	3
10.	EE672	Transient Over Voltages in Power Systems	3
11.	EE673	Renewable Power Generation Technologies	3
12.	EE674	Power System Planning and Reliability	3
13.	EE675	Modeling and Analysis of Electrical Machines	3
14.	EE676	Power Quality	3
15.	EE677	Power System Restructuring and Pricing	3
16.	EE678	Computer Relaying and Wide Area Measurement Systems	3
17.	EE680	Smart Grid Technologies	3
18.	EE681	Electrical Systems in Wind Energy	3
19.	EE684	Distributed Generation and Micro-Grids	3
20.	EE685	Control Design Techniques for Power Electronic Systems	3
21.	EE688	Principles of VLSI Design	3
22.	EE689	Advanced Topics in Power Electronics Applications	3
23.	EE690	Design Techniques for SMPS	3
24.	EE691	Energy Storage Systems	3
25.	EE692	Digital Simulation of Power Electronic Systems	3
26.	EE693	PWM Converters and Applications	3
27.	EE695	Digital Control Systems	3
28.	EE696	Power System Automation	3
29.	EE698	Grid Converters for Renewable Energy Applications	3
30.	EE699	Topics in Power Electronics and Distributed Generation	3
31.	EE700	Wireless Sensor Networks and Applications	3
32.	EE701	Soft Switching Power Converters	3
33.	EE702	Solar PV System	3
34.	EE703	E-Vehicle Technology and Mobility	3
35.	EE704	Design of Embedded Controllers for Smart Micro-Grid	3
36.	EE705	Design of Magnetics for Power Electronic Applications	3

37.	EE706	Power Management Integrated Circuits	3
38.	EE708	Electric Vehicle Charging Systems	3

Course Code & Name	MA603 Advanced Engineering Mathematics				
Course Type	Core	No of Credits		4	
Course Learning Objective (CLO)	 To learn essential optimization techniques for applying day to day problems. To learn the numerical techniques to solve ordinary differential equations. To learn the fundamentals of probability & statistical methods to apply in practical problems. 				
Prerequisites	-				
	СО-РО	O Matrix			
Course Outcomes	Upon completion of the course, t	he students will be able to	-	d Progr omes (l	
(COs)			PO1	PO2	PO3
CO1	Apply appropriate optimization unconstrained one dimensional prob		1		
CO2	Apply appropriate optimization unconstrained multi-dimensional pro		1		
CO3	Appraise and evaluate constrained of Power Systems/Power Electronics b		1		
CO4	Solve ordinary differential equations	numerically.	1		
CO5	Demonstrate applications of probabi	lity theory	2		
(Correlation le	vels 1 2 or 3 as defined below: 1	Slight (Low) 2: Moderate (M	ledium) '	3. Subs	tantial

(Correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High), "-" for no correlation)

Course Content:

Introduction to Linear Programming Techniques- Unconstrained one dimensional optimization techniques - Necessary and sufficient conditions – Unrestricted search methods - Fibonacci and Golden section method.

Unconstrained n dimensional optimization techniques –Descent methods - Steepest descent, conjugate gradient. Constrained optimization Techniques - Necessary and sufficient conditions – Equality and inequality constraints - Kuhn-Tucker conditions - Gradient projection method

Numerical Solution of Ordinary Differential Equations- Euler's method - Euler's modified method - Taylor's method and Runge-Kutta method for simultaneous equations and 2nd order equations - Multistep methods - Milne's and Adams' methods.

Random variable – two dimensional random variables – standard probability distributions – Binomial Poisson and normal distributions - moment generating function.

Sampling distributions – confidence interval estimation of population parameters – testing of hypotheses – Large sample tests for mean and proportion – t-test, F-test and Chi-square test – curve fitting-method of least squares.

- 1. Rao,S.S., 'Optimization : Theory and Application', Wiley Eastern Press, 2nd edition 1984.
- 2. Taha, H.A., 'Operations Research An Introduction', Prentice Hall of India, 2003.
- 3. Jain, M.K., Iyengar, S.R., and Jain, R.K., 'Numerical Methods for Scientific and Engineering Computation', Wiley Eastern, 1992.
- 4. S. C. Gupta, Fundamentals of Statistics, Himalaya Publishing House, Seventh Revised Edition, 2009.
- 5. S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand and Sons, Eleventh Revised Edition.

Course Code & Name	EE651 Power Converters				
Course Type	Core	No of Credits		4	
Course Learning Objective (CLO)	To give a systematic approach for transient and steady state analysis of all power electronic converters with passive and active loads.				f all power
Prerequisites	Power Electronics in UG				
	CO-PC	O Matrix			
Course Outcomes	Upon completion of the course, t	he students will be able	Aligned Programme Outcomes (POs)		
(COs)	10		P01	PO2	PO3
CO1	Study and analyze transient respons circuits	e of basic power electronic	3	2	3
CO2	Understand the working of various p	ower Converters.	3	2	3
CO3	Analyze and design various power c	onverter systems.	3	3	3

(correlation levels 1, 2 or 3 as defined below: 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High), "-" for no correlation)

Course Content:

Analysis of power semiconductor switched circuits with R, L, RL, RC loads, d.c. motor load, battery charging circuit.

Single-Phase and Three-Phase AC to DC converters-half controlled configurations- operating domains of three phase full converters and semi-converters – Reactive power considerations

Analysis and design of DC to DC converters- Control of DC-DC converters, Buck converters, Boost converters, Cuk converters

Single phase and Three phase inverters, Voltage source and Current source inverters, Voltage control and harmonic minimization in inverters

AC to AC power conversion using voltage regulators, choppers and cyclo-converters, consideration of harmonics, introduction to Matrix converters

- 1. Ned Mohan, Undeland and Robbin, 'Power Electronics: converters, Application and design', John Wiley and sons. Inc, New York, 2006.
- 2. Rashid M.H., 'Power Electronics-Circuits, Devices and Applications', Prentice Hall India, New Delhi, 2009.
- 3. P.C Sen., 'Modern Power Electronics', Wheeler publishing Company, 1st Edition, New Delhi, 2005.

Course Code & Name	EE653 Linear a	nd Non-Linear Systen	ns The	eory				
Course Type	Core	No of Credits		4				
Course Learning Objective (CLO)	Course Learning Objective The main objective of this course is to understand the fundamental of physical systems in terms of its linear and nonlinear models. Exploit the properties of linear							
Prerequisites	Basic control, Linear algebra							
	CO-P(O Matrix						
Course Outcomes	Upon completion of the course, t			gned Pro utcome	ogramme s (POs)			
(COs)	to		P01	PO2	PO3			
CO1	Understand and model physical syst		2	3	2			
CO2	Analyze the stability of linear system		3	2	3			
CO3	Design state feedback controllers an		2	2	2			
CO4	Understand and analyze non-line approximations.		3	3	3			
CO5	Inspect the stability of non-linear sys methods	stems by direct and indirect	3	1	3			
differential Stability an	n to state space modeling, mo equations and state transition mat alysis of linear systems. Controllab	trix. Dility and Observability de						
	Detectability and Stabilizability, Kaback controller design using pole		esign u	ising Ka	alman filte			
LQR and L	QG controller design							
Introduction approximation	n to nonlinear systems. Phase tion. Limit cycle and periodic so behavior near singular points.		-		-			
	nonlinear systems. Lyapunov direc	ct and indirect methods. I	nput-to	-state s	tability and			
Reference Bo	ooks:							
1. Ogata, K., '	Modern Control Engineering', Prentice	e Hall of India, 2010.						
2. C.T. Chen,	'Linear Systems Theory and Design''	Oxford University Press, 3rd	Edition	, 1999.				
	gar, 'Nonlinear Systems Analysis', 2nd	-			ew Jersey			
				.				

4. Hassan K. Khalil, 'Nonlinear Systems', Pearson Educational International Inc. Upper Saddle River, 3rd Edition.

Course Code & Name	EE657 Design and Simulation of Power Electronic Circuits Laboratory						
		Laboratory					
Course Type	Laboratory	No of Credits		2			
Course Learning Objective (CLO)	Learning requirement of the load, the ratings of components such as power devices, L and C are identified using standard steady state equations. The performance is verified						
Prerequisites	Basics of Power Electronics						
	CO-PC	O Matrix					
Course Outcomes	Upon completion of the course, the students will be able to		Aligned Programme Outcomes (POs)		-		
(COs)			P01	PO2	PO3		
CO1	Design of conventional power elec		2	2	2		
	AC-DC, DC-DC, DC-AC, AC-AC cor				_		
CO2	Steady state analysis of various pow Simulation, testing and applications		2	2	2		
CO3	converters.	or various power electronic	2	2	2		
Course Cont	ent:						
1) Single	e-phase and three-phase half-cont	rolled rectifiers					
2) Single	-phase and three-phase fully-cont	rolled rectifiers					
3) Buck,	Boost and Buck-Boost converters						
4) Single-phase and three-phase Voltage-source inverters							
5) Single	5) Single-phase and three-phase Current-source inverters						
6) Single	e-phase and three-phase AC voltage	ge regulators					

Course Code & Name	EE659 Power Electronic System Laboratory						
Course Type	Laboratory	No of Credits		2			
Course Learning Objective (CLO)	To enhance the hardware concepts for the elements of Power Electronic System						
Prerequisites	Basics of Power Electronics						
	CO-P0	O Matrix					
Course	Upon completion of the course, t	he students will be able	-		ed Programme		
Outcomes	to		Outcomes (PO				
(COs)			P01	PO2	PO3		
CO1	Understand the switching character Switches	istic of Power Electronics	3	2	2		
CO2	Develop the various elements of Por	wer Electronic Systems	3	2	3		
CO3	Test and Evaluate the Power Electro	onic Converters	3	3	3		
Course Content: 1. Study and analysis of generic Power Electronic Converter 2. Analyse the switching characteristics of Power Electronic Devices 3. Design of high frequency inductor/transformer for Power Electronic applications							

- 4. Design of MOSFET/IGBT gate drivers
- 5. Introduction to programming with digital controllers
- 6. PWM Generation using Digital Controller- Part 1
- 7. PWM Generation using Digital Controller-Part 2
- 8. Test and verification of Power Electronic Converter
- 9. Mini-Project

Course Code & Name	EE652 Switched Mode Power Conv	versio	n	
Course Type	Core No of Credits		4	
Course Learning Objective (CLO)	Understand the concepts, operation, analysis, control a switched- mode power converters	and ma	ignetics	design of
Prerequisites	Power Converters			
	CO-PO Matrix			
Course		۵lic	ned Pro	gramme
Outcomes	Upon completion of the course, the students will be able		utcomes	-
(COs)	to	P01	PO2	PO3
CO1	Understand the concepts and operation of switched mode power converters	3	2	3
CO2	Develop steady state analysis and design of switched mode power converters	3	3	3
CO3	Model and design of control techniques for switched mode power converters	3	3	3
CO4	Apply concepts of SMPC in case studies	3	3	3
Dynamic Mod analysis of co frequency pro Soft-switching converters, M Pulse Width	es, comparisons and selection criteria delling and control of second and higher order switched proverter transfer functions, Design of feedback compensation ogrammed and critical conduction mode control g DC - DC Converters: zero-voltage-switching converters fulti-resonant converters and Load resonant converters Modulated Rectifiers: Properties of ideal rectifier, realizate e current waveform, single phase and three-phase converters	ors, cu s, zero ion of 1	-current	ogrammed - switchin eal rectifie
ideal rectifiers	s and design examples			
1. Rober	t W. Erickson and Dragan Maksimovic, 'Fundamentals of Power n, 2001.	Electro	nics', Spr	inger, 2nd
	n K. Kazimierczuk, 'Pulse-width Modulated DC-DC Power Converted st Edition, 2008.	erters' J	lohn Wile	ey & Sons
3. Batars	seh, 'Power Electronic Circuits', John Wiley, 2nd Edition, 2004.			
	Whittington, B. W. Flynn, D. E. Macpherson, 'Switched Mode Pow Inc., 2nd Edition, 1997	/er Supp	olies', Joł	n Wiley &
5. Simor	Ang, Alejandro Oliva "Power-Switching Converters",3rd edition, 0	CRC Pre	ess, 2010).
	am Pressman, Keith Billings and Taylor Morey "Switching Powe	r Supply	/ Design	", 3rd Ed.,

6. Abraham Pressman, Keith Billings and Taylor Morey "Switching Power Supply Design", 3rd Ed., McGraw-Hill Professional, 2009.

Course Code & Name	EE654 Power Electronic Drives					
Course Type	Core	No of Credits		4		
Course Learning Objective (CLO)	To introduce basic concepts of load and drive interaction, speed control concepts of ac and dc drives, speed reversal, regenerative braking aspects, design methodology.					
Prerequisites	A course in Power Electronics and electrical machines.					
	CO-PO	O Matrix				
Course Outcomes	Upon completion of the course, t	the students will be able	_	Ined Pro utcomes	ogramme s (POs)	
(COs)	to		PO1	PO2	PO3	
CO1	Understand and analyze dc and different power converters.	ac motors supplied from	3	3	2	
CO2	Simulate and study motor chan converter configurations.	racteristics with different	3	3	3	
CO3	Design and implement a prototype of	Irive system.	3	3	3	

Basic power electronic drive system, components. Different types of loads, shaft-load coupling systems. Stability of power electronic drive.

Conventional methods of DC motor speed control, single phase and three phase converter fed DC motor drive. Power factor improvement techniques, four quadrant operation.

Chopper fed drives, input filter design. Braking and speed reversal of DC motor drives using choppers, multiphase choppers. PV fed DC drives.

Conventional methods of induction motor speed control. Solid state controllers for Stator voltage control, soft starting of induction motors, Rotor side speed control of wound rotor induction motors. Voltage source and Current source inverter fed induction motor drives – d-q axis modeling and vector control.

Speed control of synchronous motors, field-oriented control, load commutated inverter drives, switched reluctance motors and permanent magnet motor drives. Introduction to design aspects of machines.

- 1. P.C Sen, 'Thyristor DC Drives', John Wiley and Sons, New York, 1991.
- R. Krishnan, 'Electric Motor Drives Modeling, Analysis and Control', Prentice-Hall of India Pvt. Ltd., New Delhi, 2003.
- 3. Bimal K .Bose, 'Modern Power Electronics and AC Drives', Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2003.

Course Code & Name	EE656 Industrial Control Electro	onics					
Course Type	Core No of Credits		4				
Course Learning Objective (CLO)	 Comprehend various control electronics used in the Know and appreciate the key factors in design controllers. Implement power electronic circuits for practical applement 	of analo	g and d	igital			
Prerequisites	Fundamental knowledge about analog, digital and Power electr		s.				
	CO-PO Matrix						
Course Outcomes	Upon completion of the course, the students will be able		d Prograr omes (PC				
(COs)	to	PO1	PO2	PO3			
CO1	Understand the working of various power electronic circuits and components used in industrial applications	2	2	3			
CO2	Analyze various analog controllers and signal conditioning circuits	2	2	3			
CO3	Design control circuits for industrial applications	3	3	3			
 characteristics and applications. Overview of sensors in industrial applications – current sensors, current transformer, hall effect sensors - voltage sensors, non-isolated measurement, hall effect, temperature sensors, therma protection of power components – speed sensors – position sensors. Analog controllers - proportional controllers, proportional – integral controllers, PID controllers derivative overrun, integral windup, cascaded control, feed forward control. Signal conditioners - instrumentation amplifiers – voltage to current, current to voltage, voltage to frequency frequency to voltage converters Solid state welding power source - introduction, classification, basic characteristics, volt amperer relationship and its measurements, control of volt ampere characteristics, volt control, slope control and dual control – pulsing techniques – testing of welding power source. Introduction to heating, classification, characteristics – applications Introduction to programmable logic controllers, architecture, programming. Supervisory control and data acquisition (SCADA) Systems, components of SCADA systems, SCADA basic 							
 Michael Jac Thomas E. I Instrumenta Mehrdad Er Vehicles Fu Mini S. Tho Francis. Welding Ha 	functions, SCADA application functions in electrical engineering. Energy saving in electrical drive systems. Reference Books: Michael Jacob, 'Industrial Control Electronics – Applications and Design', Prentice Hall, 1995. Thomas E. Kissell, 'Industrial Electronics', Prentice Hall India, 2003 2. Curtis D. Jhonson 'Process Control Instrumentation technology' Pearson New International Eighth edition,2014 Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay, Ali Emadi 'Modern Electric, Hybrid Electric and Fuel Cell Vehicles Fundamentals, Theory and Design' CRC Press 2004. Mini S. Thomas, John D McDonald, Power Systems SCADA and Smart Grid, CRC Press, Taylor and Francis. Welding Handbook, Volume-2, Seventh Edition, American Welding Society.						
	tronics Applied to Industrial Systems and Transports. Volume and Energy Storage, Imprint - ISTE Press – Elsevier.	5: Measur	ement Cir	cuits,			

Course Code & Name	EE658 Power Converters and Drives Laboratory					
Course Type	Laboratory	No of Credits		2		
Course Learning Objective (CLO)	To facilitate in-depth understanding of power converter topologies and its operation with typical electric machines					
Prerequisites	Power Electronics, Electric Drives					
	CO-PO	O Matrix				
Course Outcomes	Upon completion of the course, t	he students will be able	-	d Prograr omes (PC		
(COs)	to		PO1	PO2	PO3	
CO1	design and simulate various power of	converter topologies	3	3	2	
CO2	implement control techniques for ele	ctric drive systems	3	3	3	
CO3	fabricate and test power converters		3	3	3	

List of Experiments:

- 1. Simulation of a power factor corrected (PFC) AC-DC converter
- 2. Simulation of isolated DC-DC converters
- 3. Simulation of a vector-controlled induction motor
- 4. Simulation of a direct torque-controlled induction motor
- 5. Gate pulse generation using FPGA/DSP controller and gate driver design for MOSFET
- 6. Experimental study on a permanent magnet brushless dc machine
- 7. Experimental study on a permanent magnet synchronous machine
- 8. Design and hardware implementation of a DC-DC converter
- 9. Design and hardware implementation of an AC-AC matrix converter
- 10. Experimentation on a switched reluctance motor drive

- 1. R. Krishnan, 'Electric Motor Drives Modeling, Analysis and Control', Prentice-Hall of India Pvt. Ltd., New Delhi, 2003
- 2. Ali Emadi, "Handbook of Automotive Power Electronics and Motor Drives", Taylor & Francis, 2005
- 3. Bimal K. Bose, 'Modern Power Electronics and AC Drives', Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2003
- 4. Robert W. Erickson and Dragan Maksimovic, 'Fundamentals of Power Electronics', Springer, 2nd Edition, 2001
- 5. Ned Mohan, Undeland and Robbin, 'Power Electronics: Converters, Application and Design', John Wiley and sons. Inc, New York, 2006.

Course Code & Name	EE661 Flexible AC Transmission System					
Course Type	Elective No of Credits		3			
Course Learning Objective (CLO) To familiarize students with the transmission challenges of modern electrical power systems. The course will present the basic concepts, principles and operation of fast high power electronic controllers known as Flexible AC Transmission Systems (FACTS) that enhance power system stability and effectively increase transmission capacity thus yielding significantly higher flexibility of operation. The course will focus on concepts and applications various configurations of FACTS controllers. Both thyristor based and also voltage source converters based FACTS Controllers are discussed						
Prerequisites	Power System Analysis, Power Conversion techniques or equiva	alent				
	CO-PO Matrix					
Course	Upon completion of the course, the students will be able	Aligned	-	me Outcomes		
Outcomes (COs)	to	PO1	(POs PO2) PO3		
CO1	Describe the principles of series/ shunt reactive power compensation to enhance the power flows in conventional power systems	1	2	1		
CO2	Explain the mechanism of performance enhancement of a transmission system network with the implementation of a typical FACTS controller for series/ shunt reactive compensation	2	2	2		
CO3	Analyse the modes of operation and compute the performance of different topologies of series and shunt connected FACTS controllers	2	2	3		
CO4	Explain the capability of different types of FACTS controllers with reference to exchange of active and reactive power with the power system network	2	2	3		
FACTS cor Principles Synchronor Principles	als of ac power transmission - transmission problems and atrol considerations - FACTS controllers of shunt compensation – Variable Impedance type & sw us Compensator (STATCOM) configuration - characteristics of static series compensation using GCSC, TCSC and	vitching c s and cont	onverter	type - Static		
Principles	us Series Compensator (SSSC) of operation - Steady state model and characteristics shifters - power circuit configurations	of a sta	itic volta	ge regulators		
	nciples of operation and characteristics - independent active on of UPFC with the controlled series compensators and ph		•	er flow control		
Reference Bo	ooks:					
1. Song, Y.H. a Press, Lond	and Allan T. Johns, 'Flexible AC Transmission Systems (FACTS)' on, 1999.	, Institution	of Electri	cal Engineers		
-						
systems', IE	Mohan Mathur R. and Rajiv K. Varma , 'Thyristor - based FACTS controllers for Electrical transmission systems', IEEE press, Wiley Inter science , 2002.					
1st Edition,		-				
-	a, Claudio R. Fuerte-Esqivel, Hugo Ambriz-Perez, Cesar Angeles n Power Networks' John Wiley & Sons, 2002.	-Camacho	'FACTS –	Modeling and		

Course Code & Name	EE662 High Voltage DC Transmission							
Course Type	Elective No of Credits 3							
Course Learning Objective (CLO)	transmission system and its appl	To facilitate the students understand the basic concepts and recent trends in HVDC transmission system and its applications.						
Prerequisites	Basic knowledge in circuit analysis, C and circuits.	Control Systems power syste	m and Pov	ver Electro	nic devices			
CO-PO Matrix								
Course Outcomes	Upon completion of the course, t		Aligned Programme Outcomes (POs)					
(COs)	to		PO1	PO2	PO3			
CO1	Appraise the need of HVDC tec transmission and choose appropria converter.		2	2	3			
CO2	Analyse the operation of Graetz circ without and with overlap	uit as rectifier and inverter	2	2	3			
CO3	Evaluate the operation and efficacy analyse the different faults in HVDC		3	3	3			
CO4	Discriminate and evaluate the issue reactive power control and protection	,	3	3	3			
CO5	Recognize and appraise the retransmission systems	ecent trends in HVDC	3	3	3			

Introduction to HVDC transmission, Comparison between HVAC and HVDC systems - economic, technical and reliability, limitations, Types of HVDC links - monopolar, bipolar and homopolar links, Components of HVDC transmission system

Analysis of HVDC Converters, Rectifier and Inverter operation of Graetz circuit without and with overlap. Output voltage waveforms and DC voltage in both rectifier and inverter operation, Equivalent circuit of HVDC link.

Basic means of HVDC system control, desired features, power reversal, Basic controllers - constant ignition angle, constant current and constant extinction/ advance angle control, power control, high level controllers. Converter maloperations - misfire, arc through, commutation failure

Harmonics in HVDC system - Characteristic and uncharacteristic harmonics - troubles due to harmonics

 harmonic filters - active and passive filters - Reactive power control of converters, Protection issues in

HVDC, over voltage and over current protection, voltage and current oscillations, DC reactor design, DC Circuit breakers

Recent trends in HVDC transmission-CCC based HVDC system, VSC based HVDC system– Multiterminal HVDC systems and HVDC system applications in wind power generation, Interaction between AC and DC systems

- 1. Kimbark, E.W., 'Direct Current Transmission-vol.1', Wiley Inter science, New York, 1971.
- 2. Padiyar, K.R., 'HVDC transmission systems', Wiley Eastern Ltd., 2010.
- 3. Kamakshaiah, S and Kamaraju, V, 'HVDC Transmission', 1st Edition, Tata McGraw Hill Education (India), New Delhi 2011.
- 4. Arrilaga, J., 'High Voltage Direct Current Transmission', 2nd Edition, Institution of Engineering and Technology, London, 1998.
- 5. 5. Vijay K. Sood, 'HVDC and FACTS Controllers', Kluwer Academic Publishers, New York, 2004.

Course Code & Name	EE664 Advanced Digital Signal Processing					
Course Type	Elective	No of Credits		3		
Course Learning Objective (CLO)	 Review and understanding of discrete-time systems and signals, Discrete- Time Fourier Transform and its properties, the Fast Fourier Transform. Design of Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters, implementation of digital filters 					
Prerequisites	Familiarity with signals and systems	and scientific programming	language			
	CO-PC	O Matrix				
Course Outcomes	Upon completion of the course, t	the students will be able	Aligned Programme Outcomes (POs)		Ds)	
(COs)	2		PO1	PO2	PO3	
CO1	Understand the basics of discrete-tin Transforms	ne signals, systems and Z-	2	2	2	
CO2	Perform discrete-time Fourier Trans Transform	form and discrete Fourier	3	2	2	
CO3	Design and analyse digital filters.		3	3	2	
CO4	Understand the multirate DSP syste	ms	2	3	3	
CO5	Analyse the power spectrum estimat	tion	2	3	3	

Review of Discrete-Time Signal & LTI Systems: Convolution, System representation in Z-Transform domain, Inverse Z-Transform, System characterization in Z-domain.

Fourier Transforms: Discrete Fourier Transform, FFT Algorithm, Radix-2 DIT & Radix-2 DIF Structures, Higher Radix schemes.

Filter Design and Filter Structures: Classification of digital filters, design and implementation of IIR filters, design of FIR filters

Sampling and Multirate DSP: Aliasing, Quantization, Decimation, Interpolation, Arbitrary sampling rate conversion.

Power Spectrum Estimation: Introduction to Non-parametric and parametric methods, Eigen analysis Algorithms

- 1. John G. Proakis and Dimitris G. Hanolakis, 'Digital Signal Processing, Principles, Algorithms & Applications' 4th Edition, Pearson Education, 2006.
- 2. Oppenheim and Schaffer, 'Discrete time Signal processing', Pearson Education, 2007.
- 3. Sanjit K Mitra: Digital Signal Processing, Third Edition, Tata McGraw Hill Edition- 2006.
- 4. Ludemann L. C., 'Fundamentals of Digital Signal Processing', Harper and Row publications, 2009.
- 5. P.P. Vaidyanathan: Multirate Systems and Filter Banks, Pearson Education India 2006.

Course Code & Name	EE665 Adva	nced Digital System [Design								
Course Type	Elective	No of Credits		3							
Course Learning Objective (CLO)	To impart the knowledge on th aspects and testing of the ci	-	ligital sys	tems, de	esign						
Prerequisites	Digital Electronics										
	CO-P(O Matrix									
Course Outcomes	Upon completion of the course, to		Outc	d Program omes (PC	Ds)						
(COs) CO1	Understand the concepts of synchro		PO1	PO2	PO3						
CO1	Understand the concepts of synchro Formulate the state tables and ASM		2	2	2						
CO2	Design circuits using programmable		3	2	2						
CO3	Identify faults in the digital circuits.		3	3	3						
CO5	Analyse and synthesize asynchrono	us sequential circuits	3	3	3						
logic Desig	em design Hierarchy - ASM chain n Reduction of state tables - State and synthesis of Asynchronous seq	Assignments									
	nal and sequential circuit design v	with PLD's - Introduction	to CPLD's	\$ & FPG4	l's						
Fault class Fault Diagr	es and models – Stuck at faults, nosis of combination circuits by co different method and Kohavi algori	Bridging faults - Transitio nventional methods - Pat	n and Inte	ermittent	faults						
Reference Bo	ooks:										
1. Donald D. C	Givone, 'Digital principles and design',	Tata McGraw-Hill, 2003.									
	o, 'Digital Design', Prentice Hall India sign', Prentice Hall India, 1984.	, 3rd Edition, 2007. 3. Samu	uel C. Lee,	ʻDigital c	Donald D. Givone, 'Digital principles and design', Tata McGraw-Hill, 2003. Morris Mano, 'Digital Design', Prentice Hall India, 3rd Edition, 2007. 3. Samuel C. Lee, 'Digital circuits and logic design', Prentice Hall India, 1984						

- 3. N. N. Biswas, 'Logic Design Theory', Prentice Hall India, 1993.
- 4. ZviKohavi, 'Switching and Finite Automata Theory', Tata McGraw-Hill, 3rd Edition, 2010.

0-	unos Code								
	urse Code & Name	EE66/ Neural Networks and Deep Learning							
Co	urse Type	Elective No e	of Credits		3				
L	Course Course Learning To apply artificial neural networks and deep learning in various engineering applications (CLO) applications								
Pre	erequisites	Introduction to Electrical and Electronics Engine	eering, Basic mat	hematics a	nd Proba	bility			
		CO-PO Matrix							
	Course	Upon completion of the course, the studen	nts will be able		d Prograi omes (PC				
	(COs)	to		PO1	PO2	PO3			
	CO1	Understand the fundamentals of neural network	ks.	3	2	2			
	CO2	Apply neural networks for various applications		3	3	3			
	CO3	employ deep learning to various applications to decision outcomes for both 1D and 2D data.	improve the	3	3	3			
	 Back propagation neural networks, Kohonen neural network, Maxnet, Hamming net, Bidirectional Associative Memory, Applications ART architecture – Comparison layer – Recognition layer – ART classification process – ART implementation, Boltzmann Machine, Applications Recurrent Neural Networks: Hopfield networks, Jordan networks, Elman networks, regular RNN-limitations, Long Short-Term Memory, Gated Recurrent Unit, Deep Belief Network, Autoencoders, Applications Convolutional Neural networks-2 Dimensional CNN- LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet -1 Dimensional CNN- 3 Dimensional CNN- 								
	ference Bo	nethods: Bagging and Boosting. transfer lea							
1.		agan , Howard B.Demuth, M, and Mark H. Beale	e 'Neural network	design', V	ikas Publ	ishing			
2.	Laurene Fa Prentice H	usett, "Fundamentals of Neural. Networks: Arcl all, 1994.	hitectures, Algori	thms, and.	Applicati	ons",			
3.	Ian Goodfel	ow and Yoshua Bengio and Aaron Courville, De	ep Learning, MIT	Press, 201	6. J.				
4.	Neural Netw	orks and Deep Learning, Charu C Aggarwal, Se	cond Edition, Spr	inger Publi	sher, 202	3.			

Neural Networks and Deep Learning, Charu C Aggarwal, Second Edition, Springer Pu
 Dr. Neeraj Kumar and Dr. Rajkumar, Applied Deep Learning, BPB Publishers, 2023.

C	& Name					
С	ourse Type	Elective	No of Credits		3	
	Course Learning Objective (CLO)	To enrich the learner with digital of Power Electronic Syste		s applicati	on in the	field
Pr	erequisites	Digital Electronics, Digital Signal Pi	rocessing, Computer Archited	cture.		
		CO-F	PO Matrix			
(Course Outcomes (COs)	Upon completion of the course, to	the students will be able	-	d Progra omes (P0 PO2	
	CO1	Understand the architecture of DSF	P core and its functionalities	2	3	2
	CO2	Explain the operation of interrupts a		2	3	2
	CO3	Explore the aspects of hardware in and FPGAs.	· ·	3	3	3
	CO4	Design of controllers for power con	verters.	3	3	3
	System con Modes - As Pin Multiple	bing external devices to the C2x nfiguration registers - Memory - T ssembly Programming using C2xx exing (MUX) and General Purp	ypes of Physical Memory - x DSP - Instruction Set - S ose I/O Overview - Multi	Memory oftware T	Addressi ools nd Gene	ing eral
	System con Modes - As Pin Multiple Purpose I/0 Control Re ADC Overv Event Man and Quadra	nfiguration registers - Memory - T seembly Programming using C2xx exing (MUX) and General Purpe O Control Registers - Introductio gisters - Initializing and Servicing view - Operation of the ADC in the age interrupts - General Purpose ature Enclosed Pulse (QEP) Circl poser studio, Embedded Coding 1	ypes of Physical Memory - x DSP - Instruction Set - S ose I/O Overview - Multi in to Interrupts - Interrupt Interrupts in Software. e DSP - Overview of the E e (GP) Timers - Compare uitry - General Event Mana	- Memory oftware T plexing a Hierarchy Event man Units - Ca ager Infor	Addressi ools nd Gene / - Interr ager (EV ager (EV agture Ur mation	e - ing eral upt /) - hits
	System con Modes - As Pin Multiple Purpose I/0 Control Re ADC Overv Event Man and Quadra Code comp tools, PWN Generation interleaved Controlled	nfiguration registers - Memory - T ssembly Programming using C2xx exing (MUX) and General Purp O Control Registers - Introductio gisters - Initializing and Servicing view - Operation of the ADC in the age interrupts - General Purpose ature Enclosed Pulse (QEP) Circl coser studio, Embedded Coding 1 , Dead band unit, Phase shifte converters. Rectifier - Switched Mode Power	ypes of Physical Memory - x DSP - Instruction Set - S ose I/O Overview - Multi on to Interrupts - Interrupt Interrupts in Software. e DSP - Overview of the E e (GP) Timers - Compare uitry - General Event Mana through MATLAB and othe ed PWM for full bridge of	- Memory oftware To plexing an Hierarchy Event man Units - Ca ager Inforn er modern converters	Addressi ools nd Gene / - Interri ager (EV agture Ur nation n simulati	e - ing eral upt /) - hits ion
R	System con Modes - As Pin Multiple Purpose I/0 Control Re ADC Overv Event Man and Quadra Code comp tools, PWN Generation interleaved Controlled	nfiguration registers - Memory - T ssembly Programming using C2xa exing (MUX) and General Purp O Control Registers - Introductio gisters - Initializing and Servicing view - Operation of the ADC in the age interrupts - General Purpose ature Enclosed Pulse (QEP) Circl ooser studio, Embedded Coding 1 , Dead band unit, Phase shifte converters. Rectifier - Switched Mode Power Motor Control.	ypes of Physical Memory - x DSP - Instruction Set - S ose I/O Overview - Multi on to Interrupts - Interrupt Interrupts in Software. e DSP - Overview of the E e (GP) Timers - Compare uitry - General Event Mana through MATLAB and othe ed PWM for full bridge of	- Memory oftware To plexing an Hierarchy Event man Units - Ca ager Inforn er modern converters	Addressi ools nd Gene / - Interri ager (EV agture Ur nation n simulati	e - ing eral upt /) - hits ion
	System con Modes - As Pin Multiple Purpose I/C Control Re ADC Overv Event Man and Quadra Code comp tools, PWN Generation interleaved Controlled Induction, I	nfiguration registers - Memory - T ssembly Programming using C2xx exing (MUX) and General Purp O Control Registers - Introductio gisters - Initializing and Servicing view - Operation of the ADC in the age interrupts - General Purpose ature Enclosed Pulse (QEP) Circl poser studio, Embedded Coding 1 , Dead band unit, Phase shifte converters. Rectifier - Switched Mode Power Motor Control.	ypes of Physical Memory - x DSP - Instruction Set - S ose I/O Overview - Multi in to Interrupts - Interrupt Interrupts in Software. e DSP - Overview of the E e (GP) Timers - Compare uitry - General Event Mana through MATLAB and othe ed PWM for full bridge of Converters - PWM Invert	- Memory oftware T plexing a Hierarchy Event man Units - Ca ager Inforn er modern converters	Addressi ools nd Gene / - Interri ager (EV pture Ur mation a simulati , PWM	e - ing eral upt /) - hits ion for ontrol -
1.	System con Modes - As Pin Multiple Purpose I/C Control Re ADC Overv Event Man and Quadra Code comp tools, PWM Generation interleaved Controlled Induction, I eference Bo Hamid.A.To New York,	nfiguration registers - Memory - T ssembly Programming using C2xx exing (MUX) and General Purp O Control Registers - Introductio gisters - Initializing and Servicing view - Operation of the ADC in the age interrupts - General Purpose ature Enclosed Pulse (QEP) Circl poser studio, Embedded Coding 1 , Dead band unit, Phase shifte converters. Rectifier - Switched Mode Power Motor Control.	ypes of Physical Memory - x DSP - Instruction Set - S ose I/O Overview - Multi in to Interrupts - Interrupt Interrupts in Software. e DSP - Overview of the E e (GP) Timers - Compare I uitry - General Event Mana through MATLAB and othe ed PWM for full bridge of Converters - PWM Invert	- Memory oftware T plexing a Hierarchy Event man Units - Ca ager Inforn er modern converters	Addressi ools nd Gene / - Interri ager (EV pture Ur mation a simulati , PWM	e - ing eral upt /) - hits ion for ontrol -
1. 2.	System con Modes - As Pin Multiple Purpose I/C Control Re ADC Overv Event Man and Quadra Code comp tools, PWW Generation interleaved Controlled Induction, I eference Bo Hamid.A.To New York, XC 3000 se	nfiguration registers - Memory - T ssembly Programming using C2xx exing (MUX) and General Purp O Control Registers - Introduction gisters - Initializing and Servicing view - Operation of the ADC in the age interrupts - General Purpose ature Enclosed Pulse (QEP) Circle cooser studio, Embedded Coding 1 , Dead band unit, Phase shifter converters. Rectifier - Switched Mode Power Motor Control.	ypes of Physical Memory - x DSP - Instruction Set - S ose I/O Overview - Multi in to Interrupts - Interrupt Interrupts in Software. e DSP - Overview of the E e (GP) Timers - Compare uitry - General Event Mana through MATLAB and othe ed PWM for full bridge of Converters - PWM Invert Based Electromechanical M Inc., USA, 1998.	- Memory oftware T plexing a Hierarchy Event man Units - Ca ager Inforn er modern converters	Addressi ools nd Gene / - Interri ager (EV pture Ur mation a simulati , PWM	e - ing eral upt /) - hits ion for ontrol -
R (1. 2. 3. 4.	System con Modes - As Pin Multiple Purpose I/C Control Re ADC Overv Event Man and Quadra Code comp tools, PWM Generation interleaved Controlled Induction, I eference Bo Hamid.A.To New York, XC 3000 se XC 4000 se	nfiguration registers - Memory - T ssembly Programming using C2xx exing (MUX) and General Purp O Control Registers - Introductio gisters - Initializing and Servicing view - Operation of the ADC in the age interrupts - General Purpose ature Enclosed Pulse (QEP) Circl boser studio, Embedded Coding 1 , Dead band unit, Phase shifter converters. Rectifier - Switched Mode Power Motor Control.	ypes of Physical Memory - x DSP - Instruction Set - S ose I/O Overview - Multi in to Interrupts - Interrupt Interrupts in Software. e DSP - Overview of the E e (GP) Timers - Compare I uitry - General Event Mana through MATLAB and othe ed PWM for full bridge of r Converters - PWM Invert Based Electromechanical M Inc., USA, 1998. Inc., USA, 1999.	- Memory oftware T plexing a Hierarchy Event man Units - Ca ager Inforn er modern converters	Addressi ools nd Gene / - Interri ager (EV pture Ur mation a simulati , PWM	e - ing eral upt /) - hits ion for ontrol -

Course Code & Name	EE669 Computer N	letworking	3		
Course Type	Elective No of Cr	edits	-	3	
Course Learning Objective (CLO)	This course provides an introduction fundamentals, design issues, functions and pro-		computer ne networ		
Prerequisites	Data Structures and Communication Systems.				
Course	CO-PO Matrix		Aliane	d Program	mme
Outcomes	Upon completion of the course, the students w	vill be able	-	omes (PC	
(COs)	to	-	PO1	PO2	PO3
CO1	Understand the different layers of the network archit models and their functions	tecture	2	2	2
CO2	Appraise the need of various protocols across different		2	2	2
CO3	Suggest a particular routing protocol and congestion technique for an application	n	3	2	2
Course Con	tent:	ľ		I	1
Computer media, Wir switching. Data link allocations Network la Transport l Application	tent: Network – Hardware and Software, OSI and Treless transmission, public switched telephone ne layer - design issues, Data link protocols. Me , Multiple Access protocols, IEEE protocols. ayer - Design issues, routing algorithms, con- layer- Design issues, Connection management . In layer – DNs, Electronic mail, World Wide Web, ansport protocols - TCP and UDP.	etwork - Str edium acce: gestion cor	ructure, m ss sub la ntrol algo	nultiplexin ayer - ch prithms, (ng and
Computer media, Wir switching. Data link allocations Network la Transport l Application	Network – Hardware and Software, OSI and Tereless transmission, public switched telephone net layer - design issues, Data link protocols. Met, Multiple Access protocols, IEEE protocols. ayer - Design issues, routing algorithms, con- layer - Design issues, Connection management . In layer – DNs, Electronic mail, World Wide Web, ansport protocols - TCP and UDP.	etwork - Str edium acce: gestion cor	ructure, m ss sub la ntrol algo	nultiplexin ayer - ch prithms, (ng and
Computer media, Win switching. Data link allocations Network la Transport Application Internet tra Reference Be	Network – Hardware and Software, OSI and Tereless transmission, public switched telephone net layer - design issues, Data link protocols. Met, Multiple Access protocols, IEEE protocols. ayer - Design issues, routing algorithms, con- layer - Design issues, Connection management . In layer – DNs, Electronic mail, World Wide Web, ansport protocols - TCP and UDP.	etwork - Str edium acce: gestion cor multimedia,	ructure, m ss sub la ntrol algo	ayer - ch orithms, d	ng and mannel QoS ,
Computer media, Win switching. Data link allocations Network la Transport l Application Internet tra Reference B 1. James F. K	Network – Hardware and Software, OSI and Tereless transmission, public switched telephone net layer - design issues, Data link protocols. Me , Multiple Access protocols, IEEE protocols. ayer - Design issues, routing algorithms, con- layer- Design issues, Connection management . In layer – DNs, Electronic mail, World Wide Web, ansport protocols - TCP and UDP.	etwork - Str edium acce: gestion cor multimedia,	tion, 2nd E	ayer - ch orithms, d	ng and mannel QoS ,

Course Code & Name	e EE670 Electrical Distribution Systems					
Course Type	Elective No of Credits 3					
Course Learning Objective (CLO) To explain the principles of design and operation of electric distribution the principle operation operation operation operation operation operation the principle operation operati						
Prerequisites	Transmission and Distribution of Electrical Energy, Power Syste	m Analysis				
	CO-PO Matrix					
Course Outcomes	Upon completion of the course, the students will be able	-	d Prograi omes (PC			
(COs)	to	PO1	PO2	PO3		
CO1	Perform modeling and power flow studies in the distribution system	2	3	2		
CO2	Carry out planning and reliability analysis of electrical distribution systems	2	2	3		
CO3	Select the protective components for distribution systems	2	2	2		
ground for Network m Distribution network rel Distribution concepts –	nd commercial distribution systems – Energy losses in distribution safety and protection – comparison of O/H lines and uncodel – power flow - short circuit and loss calculations. system - reliability analysis – reliability concepts – Markiability – reliability performance system expansion - planning – load characteristics – lo optimal location of substation – design of radial lines – solu-	derground kov mode ad foreca ution tech	cable sy I – distri sting – c nique.	vstem. bution design		
Voltage control – Application of shunt capacitance for loss reduction – Harmonics in the system – static VAR systems – loss reduction and voltage improvement. System protection and grounding – requirement – fuses and section analyzers-over current - Under voltage and under frequency protection – coordination of protective device						
Reference Bo	ooks:					
	'Electrical Power Distribution System', 5th edition, Tata McGraw r, 'Electrical Power Distribution System Engineering', McGraw hill					

3. Sterling, M.J.H., 'Power System Control', Peter Peregrinus, 1986.

Course Code & Name	EE671 Fuz	zzy Logic Control Syst	tems		
Course Type	Elective	No of Credits		3	
Course Learning Objective (CLO)	To learn fuzzy logic concepts To apply Fuzzy logic principles t and model-free systems.	owards control system de	esign of no	on-linear	plants
Prerequisites	control Systems				
	CO-P	O Matrix			
Course	Upon completion of the course,	the students will be able		d Prograr	
Outcomes	to			omes (PC	
(COs)			P01	PO2	PO3
CO1	Assimilate the uncertainty concept		3	1	3
CO2	Apply and analyze fuzzy logic theor		3	2	3
CO3	Develop fuzzy logic theory for non-lengineering applications.	inear plants and	2	3	2
Course Cont	ent:				
	control systems, Modelling of sys ms of ambiguity.	stems, Non-linear plants,	Concept	of uncer	tainty,
Review of f controller. F Fuzzy logic through ite through dyn Fuzzy decis washing ma	Union, Intersection, Complement eedback control systems and cor Fuzzification, Rule base design, Ir controller design through expert rative approach. Adaptive Fuzzy namic response analysis. sion making, Fuzzy genetic algorith achine, Fuzzy logic control of DC	ntroller design aspects. Ar nplication and Defuzzifica s- Direct and Indirect me control schemes. Fuzzy nms, Neuro Fuzzy systems motor speed control.	chitecture tion metho thods. Fu / logic co s, Fuzzy co	ods. zzy set c ntroller c	design design based
	am T, "Introduction to Fuzzy sets, Fuz , H. Hellendoorn, M.Reinfrank, "An I				
	Ross, Fuzzy Logic with Engineering 6.	Applications, John Wiley &	Sons Ltd F	Publicatior	ıs, 4 th
4. Sundareswa	aran K,"A Learner's Guide to Fuzzy Lo	ogic Systems" (Second editio	on), CRC P	ress, 2019	9.
Reference Bo	ooks:				
1. Satish Limited	Kumar, Neural Networks: A classroo , 2013	om approach, Tata McGraw	-Hill Publis	shing Corr	npany
2. Zdenko 2017	Kovacic, Stjepan Bogdan, "Fuzzy Co	ontroller Design: Theory and	Application	is", CRC F	ress,

Course Code & Name	EE672 Transient	Over Voltages in Pow	er Syste	ms	
Course Type	Elective	No of Credits		3	
Course Learning Objective (CLO)	To make the students familiar w voltages such as lighting stroke introduce some of the prote described. Also to depict the voltages and currents.	s, surges, switching t ection measures against	ransients such ove	etc., a er voltage	nd to es are
Prerequisites	Advanced Power System Analysis				
	CO-PO	O Matrix			
Course Outcomes	Upon completion of the course, to	he students will be able	Outc	d Prograi omes (PC	
(COs)	10		P01	PO2	PO3
CO1	Recognize and construct different ci lightning and travelling waves	rcuits representing	2	2	3
CO2	Analyze various switching transients	in power systems.	2	2	3
CO3	Appraise voltage surges in different	electrical machines.	2	3	3
CO4	Understand basic protection of mac	nines, stations and lines	2	3	3
CO5	Appreciate methods of generating a D.C., impulse voltages.	nd measuring A.C. and	2	3	3

Transients in electric power systems – Internal and external causes of over voltages – Lightning strokes – Mathematical model to represent lightning, Travelling waves in transmission lines – Circuits with distributed constants – Wave equations – Reflection and refraction of travelling waves – Travelling waves at different line terminations.

Switching transients – double frequency transients – abnormal switching transients – Transients in switching a three-phase reactor - three phase capacitor

Voltage distribution in transformer winding – voltage surges-transformers – generators and motors Transient parameter values for transformers, reactors, generators and transmission lines

Basic ideas about protection – surge diverters-surge absorbers - protection of lines and stations Modern lighting arrestors - Insulation coordination - Protection of alternators and industrial drive systems

Generation of high AC and DC-impulse voltages, currents - measurement using sphere gapspeak voltmeters - potential dividers and CRO

- 1. Allen Greenwood, 'Electrical transients in power systems', Wiley Interscience, 1991.
- 2. Bewley, L.V., 'Travelling waves on Transmission systems', Dover publications, New York, 1963.
- 3. Gallaghar, P.J. and Pearman, A.J., 'High voltage measurement, Testing and Design', John Wiley and sons, New York, 2001.

	ourse Code & Name	EE673 Renewable Power Generation Te	echnolog	gies	
С	ourse Type	Elective No of Credits		3	
	Course Learning Objective (CLO)	 This course makes the student to aware of various forms of renewable energy to understand in detail the wind energy constrained photovoltaic conversion system 	onversion	system	and
Pr	erequisites	Basic Electronics and Machines, Power Electronics			
		CO-PO Matrix			
(Course Dutcomes	Upon completion of the course, the students will be able	-	d Program omes (PC	
	(COs)	to	PO1	PO2	PO3
	CO1	Appraise the need and possibility of extracting solar energy and converting into electrical energy using PV cell.	2	2	3
	CO2	Design and analyze stand-alone and grid connected PV system	3	3	3
	CO3	Describe the dynamics of wind turbine and electrical generator.	3	2	2
	CO4	Select and design suitable configuration of the wind energy conversion system based on application.	3	3	3
	CO5	Design and analyze hybrid energy systems.	2	2	3
C		tent: Earth-Basic Characteristics of solar radiation-angle of sur	•	solar coll	_
C	Sun and E Photovolta PV System	tent:	es and arr	solar coll ays	ector
Ci	Sun and E Photovoltal PV System battery stor Wind energy Aerodynam	tent: Earth-Basic Characteristics of solar radiation-angle of sur ic cell-characteristics-equivalent circuit-Photovoltaic module ns - Design of PV systems-Standalone system with DC and A	es and arr AC loads v acking es develop nitoring sy	solar coll ays vith and w bed by bla ystem - c	ector vithou ades
C	Sun and E Photovoltal PV System battery stor Wind energ Aerodynam considerati Wind turbi semi varial partial rate	tent: Earth-Basic Characteristics of solar radiation-angle of sur ic cell-characteristics-equivalent circuit-Photovoltaic module ns - Design of PV systems-Standalone system with DC and A rage-Grid connected PV systems-Maximum Power Point Tr gy – energy in the wind – aerodynamics - rotor types – force nic models – braking systems – tower - control and mor	es and arr AC loads v acking es develop nitoring sy ectrical ge r-performa jenerators	solar coll ays vith and w bed by bla vstem - c enerators ance ana with fu	ector rithou ades desigr alysis Il and
Ci	Sun and E Photovoltal PV System battery stor Wind energ Aerodynam considerati Wind turbi semi varial partial rate permanent Hybrid en	tent: Earth-Basic Characteristics of solar radiation-angle of sur ic cell-characteristics-equivalent circuit-Photovoltaic module ns - Design of PV systems-Standalone system with DC and A rage-Grid connected PV systems-Maximum Power Point Tr gy – energy in the wind – aerodynamics - rotor types – force nic models – braking systems – tower - control and mor ions power curve - power speed characteristics-choice of el ine generator systems - fixed speed induction generato ble speed induction generator-variable speed induction g ed power converter topologies -isolated systems-self excir	es and arr AC loads v acking es develop nitoring sy ectrical ge r-performations ted induc	solar coll ays vith and w bed by bla ystem - c enerators ance ana with fu tion gene	ector- vithout ades - design alysis- alysis- ll ance erator-
	Sun and E Photovoltal PV System battery stor Wind energ Aerodynam considerati Wind turbi semi varial partial rate permanent Hybrid en	tent: Earth-Basic Characteristics of solar radiation-angle of sur ic cell-characteristics-equivalent circuit-Photovoltaic module ns - Design of PV systems-Standalone system with DC and A rage-Grid connected PV systems-Maximum Power Point Tr gy – energy in the wind – aerodynamics - rotor types – force nic models – braking systems – tower - control and mor ions power curve - power speed characteristics-choice of el ine generator systems - fixed speed induction generato ble speed induction generator-variable speed induction g ed power converter topologies -isolated systems-self excir magnet alternator performance analysis ergy systems - wind-diesel system-wind - PV system-m PV-diesel system-geothermal-tidal and OTEC systems	es and arr AC loads v acking es develop nitoring sy ectrical ge r-performations ted induc	solar coll ays vith and w bed by bla ystem - c enerators ance ana with fu tion gene	ector vithour ades desigr alysis Il ance erator
Re	Sun and E Photovoltal PV System battery stor Wind energ Aerodynam considerati Wind turbi semi varial partial rate permanent Hybrid en – biomass eference Bo	tent: Earth-Basic Characteristics of solar radiation-angle of sur ic cell-characteristics-equivalent circuit-Photovoltaic module ns - Design of PV systems-Standalone system with DC and A rage-Grid connected PV systems-Maximum Power Point Tr gy – energy in the wind – aerodynamics - rotor types – force nic models – braking systems – tower - control and mor ions power curve - power speed characteristics-choice of el ine generator systems - fixed speed induction generato ble speed induction generator-variable speed induction g ed power converter topologies -isolated systems-self excir magnet alternator performance analysis ergy systems - wind-diesel system-wind - PV system-m PV-diesel system-geothermal-tidal and OTEC systems	es and arr AC loads v racking es develop nitoring sy ectrical ge r-performa jenerators ted induc	solar coll ays vith and w bed by bla vstem - c enerators ance ana with fu tion gene ro-PV s	ector vithou ades design alysis ll and erator
	Sun and E Photovoltai PV System battery stor Wind energ Aerodynam considerati Wind turbi semi variai partial rate permanent Hybrid en – biomass eference Bo Chetan Sir Learning Pu	tent: Earth-Basic Characteristics of solar radiation-angle of sur ic cell-characteristics-equivalent circuit-Photovoltaic module ns - Design of PV systems-Standalone system with DC and A rage-Grid connected PV systems-Maximum Power Point Tr gy – energy in the wind – aerodynamics - rotor types – force nic models – braking systems – tower - control and mor tons power curve - power speed characteristics-choice of el ine generator systems - fixed speed induction generato ble speed induction generator-variable speed induction g ad power converter topologies -isolated systems-self excit magnet alternator performance analysis ergy systems - wind-diesel system-wind - PV system-m PV-diesel system-geothermal-tidal and OTEC systems boks: ngh Solanki, 'Solar Photovoltaics -Fundamentals, Technologie <i>r</i> . Ltd., New Delhi, 2011 traeton and Mertens R.P., 'Physics, Technology and use of Pl	es and arr AC loads v racking es develop nitoring sy ectrical ge r-performation ted induc nicro hyd	solar coll ays vith and w bed by bla ystem - c enerators ance ana with fu tion gene ro-PV s	ector vithou ades design alysis alysi alysis alysis alysis alysis alysis alysis alysis alysis alysi

	EE674 Power System Planning and I	Nellapilli	.y	
Course Type	Elective No of Credits		3	
Course Learning Objective (CLO)	To acquire skills in planning and building reliable power s	ystem		
Prerequisites	Power system analysis, Power system transmission and distributed and Calculus	bution, Ma	trices, Pro	bability
	CO-PO Matrix			
Course		Aligne	d Progra	nme
Outcomes	Upon completion of the course, the students will be able	_	comes (PC	
(COs)	to	PO1	PO2	PO3
CO1	explain the characteristics of loads, concepts of load forecasting and its types for power system planning.	3	3	3
CO2	comprehend the significance of reliability in power system, various methods and tools used for reliability analysis	3	3	3
CO3	describe the concepts of reliability in generation and transmission system, and system interconnection.	3	3	3
CO4	discriminate the different modes of system failure and to explain various approaches to assess power system failure	3	3	3
loads – m	tent: of planning – Long and short term planning - Load foreca ethodology of forecasting – energy forecasting – peak de g – annual and monthly peak demand forecasting.	-		
Objectives loads – m forecasting Reliability system – probability interconne transfer an	of planning – Long and short term planning - Load foreca ethodology of forecasting – energy forecasting – peak der g – annual and monthly peak demand forecasting. concepts – exponential distributions – meantime to failu MARKOV process – recursive technique. Generator syst models for generators unit and loads – reliability and cted system – generator system cost analysis – corp ad off peak loading	mand fore re – serie cem reliab nalysis o porate me	ecasting - es and p ility anal f isolated odel – e	- tota aralle ysis - d anc energy
Objectives loads – m forecasting Reliability system – probability interconne transfer an Transmiss frequency	of planning – Long and short term planning - Load foreca ethodology of forecasting – energy forecasting – peak de g – annual and monthly peak demand forecasting. concepts – exponential distributions – meantime to failu MARKOV process – recursive technique. Generator syst models for generators unit and loads – reliability and cted system – generator system cost analysis – corp	mand fore re – serie rem reliab nalysis o porate me n rate - L	ecasting - es and p ility anal f isolated odel – e -OLP me	- tota aralle ysis - d and energy thod
Objectives loads – m forecasting Reliability system – probability interconne transfer an Transmiss frequency Two plant interconne	of planning – Long and short term planning - Load foreca ethodology of forecasting – energy forecasting – peak der g – annual and monthly peak demand forecasting. concepts – exponential distributions – meantime to failu MARKOV process – recursive technique. Generator syst models for generators unit and loads – reliability and cted system – generator system cost analysis – corp ind off peak loading ion system reliability model analysis – average interruptio and duration method	mand fore re – serie rem reliab nalysis o porate me n rate - L	ecasting - es and p ility anal f isolated odel – e -OLP me ing unce	- tota aralle ysis - d anc nergy thod rtainly
Objectives loads – m forecasting Reliability system – probability interconne transfer an Transmiss frequency Two plant interconne Introductio approach -	of planning – Long and short term planning - Load foreca ethodology of forecasting – energy forecasting – peak der g – annual and monthly peak demand forecasting. concepts – exponential distributions – meantime to failu MARKOV process – recursive technique. Generator syst models for generators unit and loads – reliability and cted system – generator system cost analysis – corp ad off peak loading ion system reliability model analysis – average interruptio and duration method single load system - two plant two load system - load ctions benefits n to system modes of failure – the loss of load approach – spare value assessment – multiple bridge equivalents	mand fore re – serie rem reliab nalysis o porate me n rate - L	ecasting - es and p ility anal f isolated odel – e -OLP me ing unce	- tota aralle ysis - d anc nergy thod rtainly

Course Code & Name	EE675 Modeli	ng and Analysis of El Machines	ectrical		
Course Type	Elective	No of Credits		3	
Course Learning Objective (CLO)	To give a systematic approach fo under both transient and steady	state conditions.			
Prerequisites	Electromagnetic field theory, Vector machines	or algebra and fundamenta	ils of all e	electrical	rotating
	00.0	- Mariata			
Course Outcomes	Upon completion of the course, t	D Matrix the students will be able		d Progra omes (P0	
(COs)	to		P01	PO2	PO3
CO1	Analyze the operation of rotating ma		2	1	2
CO2	Construct machine models based or frames.	n different reference	3	2	3
CO3	Analyze and synthesize equivalent of synchronous and asynchronous made		3	3	3
CO4	Understand and analyze special ma	chines.	3	3	3
energy, co- Basic Con- inductance Three pha- phase vari induction a	of Electromagnetic Energy Conv energy and force/torque, example cepts of Rotating Machines-Calc using physical machine data; Volt se symmetrical induction machin able form; Application of referen nd synchronous machines, dynam erence frames.	e using single and doubly ulation of air gap mmf tage and torque equation e and salient pole sync ince frame theory to thre	excited sy and per p of dc mad hronous n e phase	vstem. phase m chine. machines symmetr	achine s in ical
Determinat	ion of Synchronous Machine Dyn odeling of two-phase asymmetric	•		•	
	achines - Permanent magnet sync nd sinusoidal back emf type)			-	

(square and sinusoidal back emf type) and interior permanent magnet machines. Construction and operating principle, dynamic modeling and self-controlled operation; Analysis of Switch Reluctance Motors

- 1. Charles Kingsley, Jr., A.E. Fitzgerald, Stephen D.Umans, 'Electric Machinery', Tata McgrawHill, 5th Edition, 1992.
- 2. R. Krishnan, 'Electric Motor & Drives: Modeling, Analysis and Control', Prentice Hall ofIndia, 2nd Edition, 2001.
- 3. Miller, T.J.E., 'Brushless Permanent Magnet and Reluctance Motor Drives', Clarendon Press, 1st Edition, 1989

Course Code & Name	EEG	676 Power Quality			
Course Type	Elective	No of Credits		3	
Course Learning Objective (CLO)	monitoring methods.	monitoring methods.			
Prerequisites	Power Systems, Signals and System	ns.			
	CO-P(O Matrix			
Course Outcomes	Upon completion of the course, to		-	d Progra omes (P0	
(COs)			P01	PO2	PO3
CO1	Understand different types of power source of generation.	quality problems with their	2	3	2
CO2	Interpret and analyse the results of equipment.	power quality monitoring	3	3	2
CO3	Develop different methodologies classification of power quality proble		3	3	3
CO4	Interpret and analyse the results of equipment	power quality monitoring	3	3	3
Course Cont Electric power	tent:	to power quality, IEEE ar	nd IEC - E	MC stan	dards,

Electric power quality phenomena: Introduction to power quality, IEEE and IEC - EMC standards, overview, sources and impact of power quality disturbances – RMS voltage variations, interruptions, voltage fluctuation, transients, waveform distortion and power frequency variations.

Harmonics: Harmonic sources, measurement of harmonic distortion, current and voltage limits of distortion, harmonic analysis using Fourier transform, effects of harmonic distortion and harmonic filters

Power definitions: Instantaneous power and other power definitions for single-phase system under sinusoidal and non-sinusoidal conditions, three-phase balanced and unbalanced systems under sinusoidal and non-sinusoidal conditions

Power Quality Monitoring: importance and introduction to power quality monitoring, overview of power quality disturbance classification, signal processing of disturbances, power quality indices estimation, case studies.

Custom Power Devices: Introduction to shunt and series compensators, DSTATCOM, Dynamic Voltage Restorer (DVR) and Unified Power Quality Conditioner (UPQC) – case studies.

- Dugan R. C., Mc Granaghan M. F. Surya Santoso, and Beaty H. W., 'Electrical Power System Quality', McGraw-Hill 2003.
- 2. Bollen, M. H. J., 'Understanding Power Quality Problems; Voltage sags and interruptions', IEEE Press, New York, 2000.
- 3. Mishra, Mahesh Kumar, 'Power Quality in Power Distribution Systems Concepts and Applications', CRC Press, Taylor & Francis, New York, 2024.
- 4. Ghosh, Arindam, and Gerard Ledwich, 'Power quality enhancement using custom power devices' Springer Science & Business Media, 2012.
- 5. Arrillaga, J., Watson, N. R., Chen, S., 'Power System Quality Assessment', Wiley, New York, 2011.

Course Code								
& Name	EE677 Power Sy	stem Restructuring a	nd Prici	ng				
Course Type	Elective	No of Credits		3				
Course Learning Objective (CLO)	To understand the electricity restructured power system in bo	•		issues	in a			
Prerequisites	Power system Analysis, Power syst	em Transmission and distrib	oution.					
	CO-P	O Matrix						
Course	Upon completion of the course,		Aligne	d Prograr	nme			
Outcomes (COs)	to		Outc PO1	omes (PC PO2	Ds) PO3			
CO1	Explain the deregulated electricity maround the world.	narket models functioning	3	2	3			
CO2	Understand the operational and plan generation	nning activities in power	3	2	3			
CO3	Analyse various transmission pricing	g schemes	3	3	3			
CO4	Study the development of competition distribution companies.	-	3	3	3			
CO5	Outline the salient features of Indiar operation of Indian power exchange	-	3	2	3			
Market equil Operational Unit Commit for Restructu Introduction- Open transn	- Market Models – Entities – Key is ibrium- Market clearing price- Elec- and planning activities of a Genco- ment Design - Security Constrain iring- Automatic Generation Contr Components of restructured system ission system operation; Conges ICTS in congestion management	ctricity markets around the - Electricity Pricing and F ed Unit Commitment des ol (AGC). em-Transmission pricing i stion management in Op	e world. orecasting ign Anci n Open-ac en-access	I -Price B Illary Serv ccess sys	ased vices stem- ssion			
Wheeling-Tr Allocation M	ansmission Cost ethods			C I				
 Open Access Distribution - Changes in Distribution Operations- The Development of Competition – Maintaining Distribution Planning Power Market Development – Electricity Act, 2003 - Key issues and solution; Developing power exchanges suited to the Indian market - Challenges and synergies in the use of IT in power- Competition- Indian power market- Indian energy exchange- Indian power exchange- Infrastructure model for power exchanges- Congestion Management-Day Ahead Market- Online power trading 								
Reference Bo	Reference Books:							
1. Loi Lei Lai,	Power System Restructuring and Der	regulation', John Wiley & So	ns Ltd., 200	01.				
2. Mohammad								
	son, H. Lee Willis, 'Understanding Ele	ectric Utilities and Deregulation	on' Taylor 8	Francis,	2006.			
	, 'Power System Economics: Design	-	-					
	schen, Goran Strbac,'Fundamentals		-					
6. Mohammad Dekker, Inc.	Shahidehpour, Muwaffaq Alomous ,2001.	h, 'Restructured Electrical	Power Sy	stems', M	larcel			

CO1Demonstrate knowledge of fundamental aspects of the theories, principles and practice of computer relaying33CO2Understand the application of numerical relay to power system equipment protection333CO3Understand and design wide area measurement systems333	Course Code & Name	EE678 Computer Relaying and Wide Area Measurement Systems						
Course Learning Objective (CLO)its applications in wide area measurement systems. The internal architecture and 	Course Type	Elective No of Credits 3						
CO-PO MatrixCourse Outcomes (COs)Upon completion of the course, the students will be able toAligned Programme Outcomes (POs)CO1Demonstrate knowledge of fundamental aspects of the theories, principles and practice of computer relaying333CO2Understand the application of numerical relay to power system equipment protection333CO3Understand and design wide area measurement systems333	Learning Objective	its applications in wide area mea algorithms employed in a numeri wide area measurement syst algorithms and also examining	surement systems. The in cal relays will be discusse rems, mathematical ba	nternal ard d. Unders ckground	chitecture tanding a for rela	and about aying		
Course Outcomes (COs)Upon completion of the course, the students will be able toAligned Programme Outcomes (POs)CO1Demonstrate knowledge of fundamental aspects of the theories, principles and practice of computer relaying333CO2Understand the application of numerical relay to power system equipment protection333CO3Understand and design wide area measurement systems333	Prerequisites	Digital Signal Processing, Power sys	stem protection					
Course Outcomes (COs)Upon completion of the course, the students will be able toAligned Programme Outcomes (POs)CO1Demonstrate knowledge of fundamental aspects of the theories, principles and practice of computer relaying333CO2Understand the application of numerical relay to power system equipment protection333CO3Understand and design wide area measurement systems333								
Outcomes (COs)Open completion of the course, the students will be able toOutcomes (POs)CO1Demonstrate knowledge of fundamental aspects of the theories, principles and practice of computer relaying33CO2Understand the application of numerical relay to power system equipment protection333CO3Understand and design wide area measurement systems333		СО-РС	O Matrix	-				
(COs)PO1PO2PO3CO1Demonstrate knowledge of fundamental aspects of the theories, principles and practice of computer relaying33CO2Understand the application of numerical relay to power system equipment protection33CO3Understand and design wide area measurement systems33		• •	he students will be able	_				
CO1theories, principles and practice of computer relaying333CO2Understand the application of numerical relay to power system equipment protection333CO3Understand and design wide area measurement systems333	(COs)	10		P01	PO2	PO3		
CO2 system equipment protection 3 3 3 CO3 Understand and design wide area measurement systems 3 3 3	CO1	-		3	3	3		
	CO2		rical relay to power	3	3	3		
application in Smart grid	CO3	Understand and design wide area m application in Smart grid	easurement systems	3	3	3		

Introduction to DSP, Use of computer relay, Analog to Digital Converters, Sampling, Anti – aliasing filters. Evolution of power system relaying from electromagnetic to static to computer relaying; Relay operating principles for computer relaying; Expected benefits of computer relaying, Computer relay architecture.

Three zone protection of transmission line, algorithms for impedance calculations- Mann-Morrison algorithm - Three sample technique - Two sample technique - First and second derivative algorithms - Numerical integration methods.

Problems associated with differential protection of transformer and bus-bar, magnetic inrush current, LSQ algorithm, Fourier analysis of transformer protection.

Introduction to Phasor measurement units (PMUS), global positioning system (GPS), Functional requirements of PMUs and PDCs, phasor estimation of nominal frequency inputs

Wide Area Measurement Systems (WAMS), WAMS Applications in Smart Grid, WAMS Based Protection Concepts, Adaptive Relaying, State estimation.

- 1. John G. Prokis and Dimitris G. Hanolakis, 'Digital Signal Processing, Principles, Algorithms & Applications' 4th Edition, Pearson Education, 2006.
- 2. A.G. Phadke, J.S. Thorp, 'Computer Relaying for Power Systems', John Wiley and Sons Ltd., Research Studies Press Limited, 2nd Edition, 2009.
- 3. A.G. Phadke, J.S. Thorp, 'Synchronized Phasor Measurements and Their Applications', Springer Publications, 2008.

Course Code & Name	EE680 Smart Grid Technologies							
Course Type	Elective	No of Credits		3				
Course Learning Objective (CLO)	 to understand the need and concept of Smart Grid. to study different EMS and DMS functions and smart meters. to get familiarized with the communication networks for Smart Grid. 							
Prerequisites	Fundamentals of Power Distribution	Systems.						
	CO-PC	D Matrix						
Course Outcomes	Upon completion of the course, t	he students will be able	-	d Progran omes (PC				
(COs)	to		P01	PO2	PO3			
CO1	Understand the EMS and DMS func energy resources.	tionalities, AMI, and smart	2	3	3			
CO2	Analyze the operation of modern p with prosumers and EV owners.	ower distribution system	3	3	3			
CO3	Evaluate suitable information technologies for smart grid application	and communication ons.	2	3	3			
Course Cont	Course Content:							
Introduction - Evolution of Electric Grid, Smart Grid Concept - Definitions and Need for Smart Grid – Functions – Opportunities – Benefits and challenges, Difference between conventional & Smart Grid, Technology Drivers.								
Wide area mo	gement System (EMS) - Substation nitoring protection and control - Sr Distribution Management System	nart integration of renewa	able energ	y resour	ces			

Wide area monitoring protection and control - Smart integration of renewable energy resources — Energy Storage, Distribution Management System (DMS) – Network Reconfiguration, Outage management System, Customer Information System - Application of Geographical Information System.

Introduction to Smart Meters – Advanced Metering infrastructure (AMI), AMI protocols – Standards and initiatives, Demand side management and demand response programs, Demand pricing and Time of Use, Real Time Pricing, Peak Time Pricing.

P2G paradigm – feed-in-tariff-net metering, P2P energy trading – community energy management – market operations – pricing mechanism, Plug in Hybrid Electric Vehicles – G2V – V2G – effect of grid interaction of electric vehicles – energy management.

Elements of communication and networking – architectures, standards, PLC, Zigbee, GSM, BPL, Local Area Network (LAN) – HAN, NAN, FAN - Wide Area Network (WAN) – Protocols-STTP Protocol, Modbus Protocol, IEEE 2030.5. Basics of CLOUD Computing – Basics of Blockchain - Cyber Security for Smart Grid.

- 1. Stuart Borlase 'Smart Grid: Infrastructure, Technology and Solutions', CRC Press 2012.
- 2. Janaka Ekanayake, Nick Jenkins, Kithsiri Liyanage, Jianzhong Wu, Akihiko Yokoyama, 'Smart Grid: Technology and Applications', Wiley, 2012.
- 3. Mini S. Thomas, John D McDonald, 'Power System SCADA and Smart Grids', CRC Press, 2015
- 4. Kenneth C. Budka, Jayant G. Deshpande, Marina Thottan, 'Communication Networks for Smart Grids', Springer, 2014.
- Wayes Tushar, Chau Yuen, Tapan K. Saha, Thomas Morstyn, Archie C. Chapman, M. Jan E. Alam, Sarmad Hanif, H. Vincent Poor, "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Volume 282, Part A, 2021. https://doi.org/10.1016/j.apenergy.2020.116131

& Name	EE681 Electrical Systems in Wind Energy						
Course Type	Elective No of Credits	3					
Course Learning Objective (CLO)	To introduce the various electrical generators and appropriate power electronic controllers employed in wind energy systems. To teach the students the steady-state analysis and operation of different existing configurations of electrical systems in wind energy and also the recent developments taking place in this field.						
Prerequisites	Electrical machines and power electronics.						
	CO-PO Matrix						
Course Outcomes	Upon completion of the course, the students will be able to	Aligned Programme Outcomes (POs)					
(COs)		PO1	PO2	PO3			
CO1	Understand the operation of electrical generators used in wind energy systems	2	2	2			
CO2	Analyse the steady-state performance of the wind energy conversion systems	2	2	2			
CO3	Design closed-loop controllers for specific applications	3	3	3			
Process of	ower electronic configurations. f self-excitation – steady-state equivalent circuit of SE						
Process of performance winding con used in sta Need for sin phase GCI0 component Different op standalone	f self-excitation – steady-state equivalent circuit of SE ce equations - widening the operating speed-range of SEIG nnection with suitable solid state switching schemes - pow ndalone systems. ngle-phase operation –typical configurations for the single-p Gs and SEIGs –stead state equivalent circuit and an	s by chang ver electron phase ope alysis usi nce analys	ging the s nic contro eration of ng symm sis- DFIG	stator ollers three- netrical			
Process of performance winding con used in sta Need for sin phase GCI0 component Different op standalone standalone	f self-excitation – steady-state equivalent circuit of SE ce equations - widening the operating speed-range of SEIG nnection with suitable solid state switching schemes - pow ndalone systems. ngle-phase operation –typical configurations for the single-p Gs and SEIGs –stead state equivalent circuit and an s.	s by chang ver electron phase ope alysis usi nce analys ronic confi tics- opera	ging the s nic contro eration of ng symm sis- DFIG gurations	stator ollers three- trical for s for MSGs			
Process of performance winding con used in sta Need for sin phase GCI0 component Different op standalone standalone Operation of with differe	f self-excitation – steady-state equivalent circuit of SE ce equations - widening the operating speed-range of SEIG nection with suitable solid state switching schemes - powendalone systems. Ingle-phase operation –typical configurations for the single-p Gs and SEIGs –stead state equivalent circuit and an s. Derating modes- steady-state equivalent circuit- performant applications- operation of DFIGs with different power electr and grid connected operation of PMSGs- steady-state analysis- performance characterist int power electronic configurations for standalone and grid-context.	s by chang ver electron phase ope alysis usi nce analys ronic confi tics- opera connected	ging the s nic contro eration of ng symm sis- DFIG gurations tion of P operatio	stator ollers three- tetrical 6 for s for MSGs n.			
Process of performance winding con used in sta Need for sin phase GCI0 component Different op standalone standalone Operation of with differe Reference Bo 1. Marcelo Go	f self-excitation – steady-state equivalent circuit of SE ce equations - widening the operating speed-range of SEIG nnection with suitable solid state switching schemes - pow ndalone systems. ngle-phase operation –typical configurations for the single- Gs and SEIGs –stead state equivalent circuit and an s. perating modes- steady-state equivalent circuit- performan applications- operation of DFIGs with different power elect and grid connected operation	s by chang ver electron phase ope alysis usi nce analys ronic confi tics- opera connected	ging the s nic contro eration of ng symm sis- DFIG gurations tion of P operatio	stator ollers three- tetrical 6 for s for MSGs n.			
Process of performance winding col- used in sta Need for sin phase GCI0 component Different op standalone standalone Operation of with differe Reference Bo 1. Marcelo Go Induction G	f self-excitation – steady-state equivalent circuit of SE ce equations - widening the operating speed-range of SEIG nection with suitable solid state switching schemes - powendalone systems. Ingle-phase operation –typical configurations for the single-p Gs and SEIGs –stead state equivalent circuit and an s. Derating modes- steady-state equivalent circuit- performant applications- operation of DFIGs with different power electron and grid connected operation of PMSGs- steady-state analysis- performance characterist int power electronic configurations for standalone and grid-consected poks: doy Simões and Felix A. Farret, 'Renewable Energy Systems:	s by chang ver electron phase ope alysis usi nce analys ronic confi tics- opera connected	ging the s nic contro eration of ng symm sis- DFIG gurations tion of P operatio	stator ollers three- tetrical 6 for s for MSGs n.			
Process of performance winding con used in sta Need for sin phase GCI0 component Different op standalone standalone operation of with differe Reference Bo 1. Marcelo Go Induction Go 2. Ion Boldea,	f self-excitation – steady-state equivalent circuit of SE ce equations - widening the operating speed-range of SEIG nnection with suitable solid state switching schemes - pow ndalone systems. ngle-phase operation –typical configurations for the single-p Gs and SEIGs –stead state equivalent circuit and an s. perating modes- steady-state equivalent circuit- performan applications- operation of DFIGs with different power elect and grid connected operation of PMSGs- steady-state analysis- performance characterist nt power electronic configurations for standalone and grid-cons poks: doy Simões and Felix A. Farret, 'Renewable Energy Systems: enerators', CRC Press, ISBN 0849320313, 2004.	s by chang ver electron phase ope alysis usi nce analys ronic confi tics- opera connected Design and	ging the s nic contro eration of ng symm sis- DFIG gurations tion of P operatio	stator ollers three- tetrical 6 for s for MSGs n.			
Process of performance winding col- used in sta Need for sin phase GCI0 component Different op standalone standalone Operation of with differe Reference Bo 1. Marcelo Go Induction Go 2. Ion Boldea, 3. S.N. Bhadra 4. Siegfried H	f self-excitation – steady-state equivalent circuit of SE ce equations - widening the operating speed-range of SEIG nection with suitable solid state switching schemes - powendalone systems. Ingle-phase operation –typical configurations for the single-p Gs and SEIGs –stead state equivalent circuit and an s. Derating modes- steady-state equivalent circuit- performant applications- operation of DFIGs with different power electr and grid connected operation of PMSGs- steady-state analysis- performance characterist int power electronic configurations for standalone and grid-context of Section 2007 Doks: doy Simões and Felix A. Farret, 'Renewable Energy Systems: enerators', CRC Press, ISBN 0849320313, 2004. 'Variable speed Generators', CRC Press, ISBN 0849357152, 2007	s by chang ver electron phase ope alysis usi nce analys ronic confi tics- opera connected Design and 06.	ging the s nic contro eration of ng symm sis- DFIG gurations ation of P operatio	three- etrical of for s for MSGs n.			

Course Code & Name	EE684 Distributed Generation and Micro-Grids							
Course Type	Elective	No of Credits	3					
Course Learning Objective (CLO)	 To understand the planning and operational issues related to Distributed Generation To understand various configurations of Microgrids 							
Prerequisites	The students are preferred to have a basic knowledge in Power System Analysis and Distribution Systems							
CO-PO Matrix								
Course Outcomes	Upon completion of the course, the students will be able to		Aligned Programme Outcomes (POs)					
(COs)			P01	PO2	PO3			
CO1	Understand the current scenar implementation of DGs.	io and need for the	3	2	3			
CO2	Investigate the types of interfaces an grid integration of DGs	d control schemes for the	3	3	3			
CO3	Evaluate the technical and economic	c impacts of DGs	3	3	3			
CO4	Understand different configuration modeling.	s of microgrid and its	3	3	2			
Course Content:								

Need for Distributed generation, renewable sources in distributed generation, current scenario in Distributed Generation, Planning of DGs – Siting and sizing of DGs – optimal placement of DG sources in distribution systems.

Grid integration of DGs – Different types of interfaces - Inverter based DGs and rotating machine based interfaces - Aggregation of multiple DG units. Energy storage elements: Batteries, ultra-capacitors, flywheels Technical impacts of DGs – Transmission systems, Distribution systems, De-regulation – Impact of DGs upon protective relaying – Impact of DGs upon transient and dynamic stability of existing distribution systems

Introduction to micro-grids – Types of micro-grids – autonomous and non-autonomous grids – Sizing of micro-grids- modeling & analysis- Micro-grids with multiple DGs – Micro- grids with power electronic interfacing units. Transients in micro-grids - Protection of micro-grids – Case studies

Economic and control aspects of DGs –Market facts, issues and challenges - Limitations of DGs. Voltage control techniques, Reactive power control, Harmonics, Power quality issues. Reliability of DG based systems – Steady-state and Dynamic analysis.

- H. Lee Willis, Walter G. Scott ,'Distributed Power Generation Planning and Evaluation', Marcel Decker Press, 2000.
- M.GodoySimoes, Felix A.Farret, 'Renewable Energy Systems Design and Analysis with Induction Generators', CRC press.
- 3. Robert Lasseter, Paolo Piagi, ' Micro-grid: A Conceptual Solution', PESC 2004, June 2004.
- F. Katiraei, M.R. Iravani, 'Transients of a Micro-Grid System with Multiple Distributed Energy Resources', International Conference on Power Systems Transients (IPST'05) in Montreal, Canada on June 19-23, 2005.
- 5. Z. Ye, R. Walling, N. Miller, P. Du, K. Nelson 'Facility Microgrids', Subcontract report, May 2005, General Electric Global Research Center, Niskayuna, New York.

Course Co & Name		-		
Course Ty			3	
Course Learning Objectiv (CLO)	The main objective of this course is to study the a	pplication	-	control
Prerequisi	tes Classical Control, Systems Theory, Power Converters			
	CO-PO Matrix			
Course		Alio	gned Progra	amme
Outcome	Upon completion of the course, the students will be a		utcomes (F	
(COs)	to	PO		PO3
CO1	Recognize different control techniques and design compensators, controllers and observers	of 2	1	2
CO2	Model and analyze various closed loop controllers	1	2	3
CO3	Design controllers for different rectifiers and to analyze various modes of operation	2 ^e 2	1	3
CO4	Model and design of various controllers for BLDC ar Reluctance motors.	nd 2	3	3
comper and ob Control Conver	v of basic control theory – control design techniques suc nsator design. Review of state space control design approa server design. I of DC-DC converters. State space modeling of Buck, Buc rters. Equilibrium analysis and closed loop voltage regulat	ch – state f k-Boost, C	eedback co ouk, Sepic,	ontroller Zeta
Review comper and obs Control Conver control Control feedba	y of basic control theory – control design techniques suc nsator design. Review of state space control design approa server design. I of DC-DC converters. State space modeling of Buck, Buc ters. Equilibrium analysis and closed loop voltage regulat lers and sliding mode controllers I of rectifiers. State space modeling of single phase and th ck controllers and observer design for output voltage regu	ch – state f k-Boost, C ions using ree phase	eedback co uk, Sepic, state feed rectifiers. S	Zeta Dack
Review compet and ob Control Conver control feedba Analysi Modelli less sp and co	 of basic control theory – control design techniques such sator design. Review of state space control design approars server design. of DC-DC converters. State space modeling of Buck, Buck ters. Equilibrium analysis and closed loop voltage regulatelers and sliding mode controllers of rectifiers. State space modeling of single phase and the ck controllers and observer design for output voltage regulatelers of continuous and discontinuous mode of operation. ng of Brushless DC motors and its speed regulations – Seed control of BLDC motor and Sliding mode control design ntrol of switched reluctance motor 	ch – state f k-Boost, C ions using ree phase lation for r tate space for BLDC n	eedback co uk, Sepic, state feed rectifiers. S nonlinear lo model, se notor. Mode	Zeta Dack State ads. Insor
Review comper and ob Control Conver control feedba Analysi Modelli less sp and con Modelir voltage	 of basic control theory – control design techniques such sator design. Review of state space control design approars server design. of DC-DC converters. State space modeling of Buck, Buck ters. Equilibrium analysis and closed loop voltage regulatelers and sliding mode controllers of rectifiers. State space modeling of single phase and the ck controllers and observer design for output voltage regulates of continuous and discontinuous mode of operation. ng of Brushless DC motors and its speed regulations – Seed control of BLDC motor and Sliding mode control design ntrol of switched reluctance motor ng of multi input DC-DC converters and its application to regulation of Multi input DC-DC converter using state feed 	ch – state f k-Boost, C ions using ree phase lation for r tate space for BLDC n	eedback co uk, Sepic, state feed rectifiers. S nonlinear lo model, se notor. Mode e energy.	Zeta Dack State ads. Insor
Review compet and ob Control Conver control feedba Analysi Modelli less sp and con	 of basic control theory – control design techniques such sator design. Review of state space control design approars server design. of DC-DC converters. State space modeling of Buck, Buck ters. Equilibrium analysis and closed loop voltage regulatelers and sliding mode controllers of rectifiers. State space modeling of single phase and the ck controllers and observer design for output voltage regulates of continuous and discontinuous mode of operation. ng of Brushless DC motors and its speed regulations – Seed control of BLDC motor and Sliding mode control design ntrol of switched reluctance motor ng of multi input DC-DC converters and its application to regulation of Multi input DC-DC converter using state feed 	ch – state f k-Boost, C ions using ree phase lation for r tate space for BLDC n	eedback co uk, Sepic, state feed rectifiers. S nonlinear lo model, se notor. Mode e energy.	Zeta Dack State ads. Insor
Review comper and ob Control Conver control feedba Analysi Modelli less sp and co Modelir voltage	 of basic control theory – control design techniques such sator design. Review of state space control design approars server design. of DC-DC converters. State space modeling of Buck, Buck ters. Equilibrium analysis and closed loop voltage regulatelers and sliding mode controllers of rectifiers. State space modeling of single phase and the ck controllers and observer design for output voltage regulates of continuous and discontinuous mode of operation. ng of Brushless DC motors and its speed regulations – Seed control of BLDC motor and Sliding mode control design ntrol of switched reluctance motor ng of multi input DC-DC converters and its application to regulation of Multi input DC-DC converter using state feed 	ch – state f k-Boost, C ions using ree phase lation for r tate space for BLDC n renewable back contr	eedback co uk, Sepic, state feed rectifiers. S nonlinear Ic model, se notor. Mode e energy. ollers.	Dentroller Zeta Dack State ads. nsor elling Output
Review compet and ob Control Conver control feedba Analysi Modelli less sp and co Modelir voltage Referenc 1. Sira -F Springe 2. Siew-C	 of basic control theory – control design techniques such sator design. Review of state space control design approars server design. of DC-DC converters. State space modeling of Buck, Buck ters. Equilibrium analysis and closed loop voltage regulate lers and sliding mode controllers of rectifiers. State space modeling of single phase and the ck controllers and observer design for output voltage regulates is of continuous and discontinuous mode of operation. ng of Brushless DC motors and its speed regulations – Seed control of BLDC motor and Sliding mode control design introl of switched reluctance motor ng of multi input DC-DC converters and its application to regulation of Multi input DC-DC converter using state feed Books: Ramirez, R. Silva Ortigoza, 'Control Design Techniques in 	ch – state f k-Boost, C ions using ree phase lation for r tate space for BLDC n renewable back contr Power El	eedback co uk, Sepic, state feed rectifiers. S nonlinear lo model, se notor. Mode e energy. ollers.	ontroller Zeta back State ads. nsor elling Output
Review comper and ob Control Conver control feedba Analysi Modelli less sp and co Modelir voltage Referenc 1. Sira -F Springe 2. Siew-C CRC Pr	 of basic control theory – control design techniques suchsator design. Review of state space control design approasserver design. of DC-DC converters. State space modeling of Buck, Bucters. Equilibrium analysis and closed loop voltage regulated lers and sliding mode controllers of rectifiers. State space modeling of single phase and the ck controllers and observer design for output voltage regulations of continuous and discontinuous mode of operation. ng of Brushless DC motors and its speed regulations – Seed control of BLDC motor and Sliding mode control design introl of switched reluctance motor ng of multi input DC-DC converters and its application to regulation of Multi input DC-DC converter using state feed eBooks: Ramirez, R. Silva Ortigoza, 'Control Design Techniques in er, 2006. hong Tan, Yuk-Ming Lai, Chi Kong Tse, 'Sliding mode control of setting the feed to the set of the s	ch – state f k-Boost, C ions using ree phase lation for r tate space for BLDC n renewable back contr Power El	eedback co uk, Sepic, state feed rectifiers. S nonlinear lo model, se notor. Mode e energy. ollers.	ontroller Zeta back State ads. nsor elling Output

Course Code & Name	EE687 Electric and Hybrid Vehicles					
Course Type	Open Elective	No of Credits	3			
Course Learning Objective (CLO)	This course introduces the funda of hybrid and electric vehicles.	mental concepts, principl	es, analys	sis and de	esign	
Prerequisites	Power Conversion Techniques, Elec	trical Machines				
	CO-P(D Matrix				
Course Outcomes	Upon completion of the course, t		Outc	d Prograi omes (PC		
(COs)	10		P01	PO2	PO3	
CO1	Understand mathematical mod characteristics of hybrid and electric	· •	2	2	2	
CO2	Analyze the concepts, topologies a electric traction systems	nd power flow control of	2	2	3	
CO3	Appraise the configuration and configuration and contract of the second	ontrol of various hybrid	2	2	3	
CO4	Plan and design appropriate vehicle	management system.	3	3	3	
electric ve performanc mathematic Basic conce	hybrid and electric vehicles, soc hicles, impact of modern drive	-trains on energy supp characterization, transn formance. to various hybrid drive-tra	ilies. Bas nission d in topolog	ics of v character ies, powe	ehicle ristics, er flow	
traction, int train topolo	roduction to various electric drive- gies, fuel efficiency analysis.	train topologies, power flo	w control	in hybrid	drive-	

control of DC Motor drives, Configuration and control of Introduction Motor drives, configuration and control of Dermanent Magnet Mater drives, Configuration and control of Switch Polystense Mater

of Permanent Magnet Motor drives, Configuration and control of Introduction Motor drives, configuration and control of Switch Reluctance Motor drives, drive system efficiency.

Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems.

Introduction to energy management strategies used in hybrid and electric vehicle, classification of different energy management strategies, comparison of different energy management strategies, implementation issues of energy strategies.

- 1. Bimal Bose, 'Power electronics and motor drives', Elsevier, 2006.
- 2. Ion Boldea and S.A Nasar, 'Electric drives', CRC Press, 2005.
- 3. C.C. Chan and K.T. Chau, "Modern electric Vehicle Technology", Oxford University Press, 2001.
- 4. Ali Emadi, "Advanced Electric Drive Vehicles", CRC Press, Taylor and Francis ,2014.
- 5. Mehrdad Ehsani, Yimin Gao, Sebastien E.Gay, Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles fundamentals, theory and design", CRC Press, Taylor and Francis, 2010.

Course Code & Name	EE688 Principles of VLSI Design					
Course Type	Elective	No of Credits		3		
Course Learning Objective (CLO)	Enables the student to get exposits application	sure on low power electro	onic syste	m desigr	and	
Prerequisites	Digital Electronics, Electronic Circuit	S				
	CO-PC	D Matrix				
Course Outcomes	Upon completion of the course, t	he students will be able	•	d Program omes (PC		
(COs)	to		P01	PO2	PO3	
CO1	Understand the concepts and charac	cteristics of MOS devices.	3	3	3	
CO2	Model the system using Hardware D	escription languages.	3	3	3	
CO3	Design the CMOS logic circuits and	memory units.	3	3	2	
CO4	Acquire knowledge on PLDS.		3	3	2	
CO5	Appraise the possibilities of ASIC de	sign.	3	3	3	

MOS and Fabrication: VLSI technology- NMOS, CMOS and BICMOS circuit fabrication. Comparison of IC technologies. Operation characteristics, design equations, models and second order effects of MOS transistors, Fabrication of resistors and capacitors. Latch up, Driver circuits.

Hardware Description languages: VHDL- Modeling styles –Design of simple/ complex circuits using VHDL. Overview of Verilog HDL -Design of simple circuits using Verilog HDL.

CMOS Logic Circuits: Implementation of logic circuits using MOS and CMOS, Pass transistor and transmission gates ,design of combinational and sequential circuits – memory design.

Programmable Devices: Simple and Complex Programmable logic devices (SPLD and CPLDs), Field Programmable Gate Arrays (FPGAs), Internal components of FPGA, Case study: A CPLD and a 10 million gates type of FPGA.

ASIC: Types of ASICs-Design flow-Programmable ASICs-Programmable ASIC logic cells and interconnect for Xilinx and Altera families.

- Neil Weste, David Harris, 'CMOS VLSI Design: A Circuits and Systems Perspective', Addison-Wesley, 4th Edition, 2010
- 2. M. J. Smith, 'Application Specific Integrated Circuits', Addison Wesley, 1997.
- 3. Uyemura, 'Introduction to VLSI Circuits and Systems', Wiley, 2002.
- 4. J. Bhaskar, 'A Verilog HDL Primer', Star Galaxy, 2nd Edition, 2000.

Course Code & Name	EE689 Advanced Topics in Power Ele	ectronics	5			
Course Type	Elective No of Credits		3			
Course Learning Objective (CLO)	To give an introduction to the recent developments of power electronics from components, topology, control techniques to thermal & EMC. This course drives on the application requirements of power electronics. This is a higher level of subject that will help to work in demanding areas of power electronics.					
Prerequisites	Basics of converter topology (AC-DC,AC-AC & DC-DC), basic of Electronic	Equipment, Basics of reactive elements, storage and high frequency magnetic, Basics				
	CO-PO Matrix					
Course Outcomes	Upon completion of the course, the students will be able to	Outc	d Prograr omes (PC)s)		
(COs)	Understand the principles of operation of advanced Silicon	PO1	PO2	PO3		
CO1	devices	2	2	3		
CO2	Appraise various advanced converter topologies and the suitable control schemes	3	3	3		
CO3	Recognize recent developments in design aspects of reactive elements such as the material, the structure etc and the effect on performance	2	2	3		
CO4	Understand nuances of advanced energy storage systems such as battery energy storage system (BESS), ultra- capacitors, etc and strategies for power management in such systems	3	2	2		
CO5	Distinguish between various possible solutions pertaining to thermal management and EMI/EMC problems and devise solutions for simple power electronic systems	3	3	3		
SiC devices Advance co converters current sou Advances in ferrite, Amo	to switches - Advanced Silicon devices - Silicon HV thyris s - diodes, thyristors, JFETs & IGBTs. Gallium nitrate device inverter topologies for PEE - Interleaved converters, Z-Sour (Cascaded H-Bridge, Diode clamped, NPC, Flying capa rce converters, Advanced drive control schemes. In reactive elements - Advanced magnetic material, technol prphous, Planar designs) Advance capacitive designs (Ma rs for storage, Aluminum electrolytic)	es - Diode ce convert acitor) Mul ogy and d	es, MoSF ters, Mult lti pulse esign (Po	ETs. i level PWM owder		
energy stor	orage systems - Developments in battery systems, Ultrage, Hybrid storage systems for EV/HEV, Power manage age in renewable.	•	•			
cooled, hea	gineering with EMI/EMC techniques - Advanced thermal sol at pipes, hybrid techniques) EMC techniques (Conducted ty), System design for EMC.	•		•		
Reference Bo	oks:					
1. Andrzej M T York, 1998	rzynadlowski, 'Introduction to Modern Power Electronics, John '	Wiley and	sons. Inc,	New		

- R D Middle Brook& Slobodan CUK, 'Advances in Switched Mode Power Conversion', Vol I, II, & III, Tesla Co 1983
- B. Jayant Balinga, 'Advanced High Voltage Power Device Concepts', Springer New York 2011. ISBN 978 -1- 4614-0268-8
- 4. BIN Wu, ' High Power Converters and AC Drives', IEEE press Wiley Interscience, a John wiley& sons Inc publication 2006
- 5. Wurth Electronics, 'Trilogy of Magnetics, Design guide for EMI filter design in SMPS & RF circuits', 4th extended and revised edition.

Course Code & Name	EE690 Design Technique	s for	SMPS		
Course Type	Elective No of Credits			3	
Course Learning Objective (CLO)	To give a practical step by step approach for design and apply the necessary recent technology to com requirements.		•		
Prerequisites	Power Electronics course in UG with knowledge on Basics supplies-LPS & SMPS, Basic topologies in SMPC, Contri- high frequency magnetic, Basics of EMC & any power sime	ol of	power sem	niconducto	
	CO-PO Matrix				
Course Outcomes	Upon completion of the course, the students will be	able	_	ned Prog utcomes (
(COs)	to		PO1	PO2	PO3
CO1	choose various converter topologies and approp components	riate	3	2	3
CO2	Design measurement, monitoring and control circuitry Switched Mode Power Supplies	for	3	3	3
CO3	Evaluate thermal performance of SMPS units and des appropriate filters	ign	3	3	3
CO4	Explore the standards and recent advancements related SMPS	to	3	3	3
CO5	Analyze and simulate various converter topologies		3	3	3
Course Cont	ent:				

Introduction of Available Sources& demanding loads: Sources-AC mains, Lab supplies, Batteries, Solar Cells Loads - Requirements of load, battery as load, Selection of Topology :Step-Up/Step-Down, Multiple outputs, Continuous & discontinuous modes of operation, Isolated converters, Various configurations of Converters, Selection of Components: Selection of Resistors, Chokes, Capacitors, Diodes, MOSFETs & IGBTs, Connectors, Design of Magnetics Fundamentals & ideal conditions, design of High frequency chokes & transformers, Selection of wire gauge, sealing of magnetic.

Guide to Instrumentation: Basics of measurements using DMM, Oscilloscope, Electronic loads, etc Design of Magnetics Fundamentals & ideal conditions, design of High frequency chokes & transformers, Selection of wire gauge, sealing of magnetics Design of Feedback circuits Basic control requirements, Current &voltage mode control fundamentals& system stability conditions Design of Control and Monitoring circuits Practical Control circuitry & Monitoring circuitry requirements.

Evaluations and Thermal management Performance evaluations of SMPS & thermal loss calculations and cooling options packaging of converter EMI control requirements Overview of EMC, differentiating signal and noise, Layout concepts Low & High frequency filtering requirements, Optimal filter design Worst case analysis Introduction to datasheet reading, operation tuned to datasheet, typical worst-case analysis

Standards governing the power supplies IEC standards f or Electrical &Environmental testing, certification standards, Ingress protection standards Recent trend in Power supplies Recent advancements in components, Recent advancements in topologies, Digital control of power supplies, Power Integration &its Low power applications.

Analysis and Simulation using PSIM:BUCK, BOOST&BUCK, BOOST, Typical discrete power factor corrector circuit.

Reference Books:

- 1. Ned Mohan , Undeland and Robbins, 'Power Electronics Converters, Applications and Design',2ndEdition, JohnWiley&sons,1995.
- 2. Abraham I. Pressman, Keith Billings, Taylor Morey, 'SwitchingPowerSupplyDesign', 3rd Edition, McGraw-Hill 2009.
- 3. L. Umanand and SR Bhat, 'Design of Magnetic Components for Switched Mode Power Converters', Wiley Eastern Limited.

4. International Standard, IEC 60571 Edition 2.12006-12.

Course Code & Name	EE691 Energy Storage Systems						
Course Type	Elective	No of Credits	3				
Course Learning Objective (CLO)	To emphasize basic physics, chemistry, and engineering issues of energy storage devices, such as batteries, thermoelectric convertors, fuel cells, super capacitors.						
Prerequisites	Fundamental Chemistry and Materia	al Science					
	00 P	O Martala					
-	CO-PO	O Matrix					
Course Outcomes	Upon completion of the course, t	the students will be able	-	d Prograi omes (PC			
(COs)	to		PO1	PO2	PO3		
CO1	Recognize various issues related to energy market, its growth and its structural implications in India.			2	3		
CO2	Analyze the performance of different		3	3	3		
CO3	Employ different thermoelectric m appropriately.	neasurement techniques	2	1	3		
CO4	Interpret the applications of superc storage systems.	apacitors for appropriate	2	2	3		
CO5	Understand and differentiate differer	nt types of fuel cells.	3	2	3		
market and implications	or both traditional and renewable e d future need through 2020 - e s of the Kyoto Protocol, and struct	energy, economic growth ural change in the electric	n and the city supply	enviror industry	iment,		
	Batteries - performance, charging and discharging, storage density, energy density, and safety issues, classical batteries - Lead Acid, Nickel-Cadmium, Zinc Manganese dioxide, and modern						

Batteries - performance, charging and discharging, storage density, energy density, and safety issues, classical batteries - Lead Acid, Nickel-Cadmium, Zinc Manganese dioxide, and modern batteries -Zinc-Air, Nickel Hydride, Lithium Battery.

Thermoelectric - electron conductor and phonon glass, classical thermoelectric materials (i) four-probe resistivity measurement, Seebeck coefficient measurement, and thermal conductivity measurement.

Super capacitors - types of electrodes and some electrolytes, Electrode materials - high surface area activated carbons, metal oxide, and conducting polymers, Electrolyte - aqueous or organic, disadvantages and advantages of super capacitors - compared to battery systems, applications - transport vehicles, private vehicles, and consumer electronics - energy density, power density, price, and market.

Fuel cells - direct energy conversion - maximum intrinsic efficiency of an electrochemical converter, physical interpretation - carnot efficiency factor in electrochemical energy convertors, types of fuel cells - hydrogen oxygen cells, hydrogen air cell, alkaline fuel cell, and phosphoric fuel cell.

Energy converters for Battery and Fuel cells.

- 1. Tetsuya Osaka, Madhav Datta, 'Energy Storage Systems in Electronics', Gordon and Breach Science Publishers, 2000.
- 2. R. M. Dell, D.A.J. Rand, 'Understanding Batteries', RSC Publications, 2001.
- 3. James Larminie, Andrew Dick, 'Fuel Cell System Explained', J. Wiley, 2003.
- 4. D.M. Rowe, 'Thermo-electrics Handbook: Macro to Nano', CRC Press, 2006.

& Name	EE 692 Digital Simulation of Power Elect	onic Sys	tems	
Course Type	Elective No of Credits		3	
Course Learning Objective (CLO)	To provide knowledge on modeling and simulation of powers	er simulatic	on circuit	s and
Prerequisites	Knowledge in Power Electronics and machines			
	CO-PO Matrix			
Course	Upon completion of the course, the students will be able		d Progra	
Outcomes (COs)	to	Outco PO1	omes (PO PO2	Ds) PO3
CO1	develop algorithm and software models for power electronics and drives applications	3	2	2
CO2	analyze the transient and steady state performance of the designed models.	3	2	2
CO3	choose suitable devices or models for appropriate applications.	2	2	2
of SCR, TF to R, L, C	R, L, RL, R-C and R-L-C circuits. Extension to AC circuits. f diode in simulation. Diode with R, R-L, R-C and R-L-C load RIAC, IGBT and Power Transistors in simulation. Application c circuits with power electronic switches. Simulation of of snubber circuits.	on of nume	erical me	ethods
of SCR, TF to R, L, C simulation	f diode in simulation. Diode with R, R-L, R-C and R-L-C load RIAC, IGBT and Power Transistors in simulation. Applicati	on of nume gate/base	erical me drive ci	ethods rcuits,
of SCR, TF to R, L, C simulation State spac modeling:	f diode in simulation. Diode with R, R-L, R-C and R-L-C load RIAC, IGBT and Power Transistors in simulation. Applicati c circuits with power electronic switches. Simulation of of snubber circuits.	on of nume gate/base on to elec	trical me	ethods rcuits, achine
of SCR, TF to R, L, C simulation State space modeling: induction, D Simulation converters Simulation current and	f diode in simulation. Diode with R, R-L, R-C and R-L-C load RIAC, IGBT and Power Transistors in simulation. Application c circuits with power electronic switches. Simulation of of snubber circuits. The modeling and simulation of linear systems. Introduction DC, and synchronous machines, simulation of basic electric of single phase and three phase uncontrolled and con with self commutated devices- simulation of power fact of converter fed dc motor drives ,Simulation of thyriston a load commutation schemes, Simulation of chopper fed dc	on of nume gate/base on to elec c drives, sta ntrolled (S ctor correc r choppers motor.	ability as CR) rec tion sch	ethods rcuits, achine pects. tifiers, emes, oltage,
of SCR, TF to R, L, C simulation State spac modeling: induction, E Simulation converters Simulation current and Simulation Space vec	f diode in simulation. Diode with R, R-L, R-C and R-L-C load RIAC, IGBT and Power Transistors in simulation. Application c circuits with power electronic switches. Simulation of of snubber circuits. The modeling and simulation of linear systems. Introduction DC, and synchronous machines, simulation of basic electric of single phase and three phase uncontrolled and con- with self commutated devices- simulation of power fac- of converter fed dc motor drives ,Simulation of thyristor	on of nume gate/base on to elec c drives, sta ntrolled (S ctor correc r choppers motor. elf-commu	trical me drive ci trical ma ability as CR) rec tion sch s with vo	ethods rcuits, achine pects. tifiers, emes, oltage, evices,
of SCR, TF to R, L, C simulation State spac modeling: induction, E Simulation converters Simulation current and Simulation Space vec	f diode in simulation. Diode with R, R-L, R-C and R-L-C load RIAC, IGBT and Power Transistors in simulation. Application c circuits with power electronic switches. Simulation of of snubber circuits. The modeling and simulation of linear systems. Introduction DC, and synchronous machines, simulation of basic electric of single phase and three phase uncontrolled and con- with self commutated devices- simulation of power fac- of converter fed dc motor drives ,Simulation of thyristor d load commutation schemes, Simulation of chopper fed dc of single and three phase inverters with thyristors and s tor representation, pulse-width modulation methods for ve- nulation of inverter fed induction motor drives.	on of nume gate/base on to elec c drives, sta ntrolled (S ctor correc r choppers motor. elf-commu	trical me drive ci trical ma ability as CR) rec tion sch s with vo	ethods rcuits, achine pects. tifiers, emes, oltage, evices,
of SCR, TF to R, L, C simulation State space modeling: induction, E Simulation converters Simulation current and Simulation Space vec control. Sim	f diode in simulation. Diode with R, R-L, R-C and R-L-C load RIAC, IGBT and Power Transistors in simulation. Application c circuits with power electronic switches. Simulation of of snubber circuits. The modeling and simulation of linear systems. Introduction DC, and synchronous machines, simulation of basic electric of single phase and three phase uncontrolled and con- with self commutated devices- simulation of power fac- of converter fed dc motor drives ,Simulation of thyristor d load commutation schemes, Simulation of chopper fed dc of single and three phase inverters with thyristors and s tor representation, pulse-width modulation methods for ve- nulation of inverter fed induction motor drives.	on of nume gate/base on to elec c drives, sta ntrolled (S ctor correc r choppers motor. elf-commu	trical me drive ci trical ma ability as CR) rec tion sch s with vo	ethods rcuits, achine pects. tifiers, emes, oltage, evices,
of SCR, TF to R, L, C simulation State space modeling: induction, E Simulation converters Simulation current and Simulation Space vec control. Sim Reference Bo 1. Simulink Ref 2. Robert Erice	f diode in simulation. Diode with R, R-L, R-C and R-L-C load RIAC, IGBT and Power Transistors in simulation. Application c circuits with power electronic switches. Simulation of of snubber circuits. The modeling and simulation of linear systems. Introduction DC, and synchronous machines, simulation of basic electric of single phase and three phase uncontrolled and con- with self commutated devices- simulation of power fac- of converter fed dc motor drives ,Simulation of thyristor a load commutation schemes, Simulation of chopper fed dc of single and three phase inverters with thyristors and s tor representation, pulse-width modulation methods for ven- nulation of inverter fed induction motor drives.	on of nume gate/base on to elec c drives, sta ntrolled (S ctor correc r choppers motor. elf-commu oltage con	trical me drive ci trical ma ability as CR) rec tion sch s with vo ttated de trol, way	ethods rcuits, achine pects. tifiers, emes, oltage, evices, veform

Course Code & Name	EE693 PWM (Converters and Applic	ations		
Course Type	Elective	No of Credits		3	
Course Learning Objective (CLO)	 To understand the concern including basic circuit oper To understand the steady along with the applications 	ation and design -state and dynamic analy	vsis of PW	/M conve	
Prerequisites	Power Converters				
	CO-PO	O Matrix			
Course	Upon completion of the course, t	he students will be able	Aligne	d Progran	nme
Outcomes	to		Outc	omes (PC	Ds)
(COs)	10		P01	PO2	PO3
CO1	Understand the basic operations of for Power Converters.	various PWM techniques	2	3	3
CO2	Steady-State and transient modellir converters with various PWM techni	• • •	3	3	3
CO3	Analysis and Design of Control converters along with the application and power quality		3	3	3

AC/DC and DC/AC power conversion, overview of applications of voltage source converters, pulse modulation techniques for bridge converters, Multilevel Inverter – diode clamped inverter – flying capacitor inverter.

Bus clamping PWM and advanced bus clamping PWM, space vector based PWM, advanced PWM techniques, practical devices in converter; calculation of switching and conduction losses.

Compensation for dead time and DC voltage regulation; dynamic model of a PWM converter, multilevel converters; constant V/F induction motor drives.

Estimation of current ripple and torque ripple in inverter fed drives; line – side converters with power factor compensation.

Active power filtering, reactive power compensation; harmonic current compensation.

- 1. Mohan, Undeland and Robbins, 'Power Electronics; Converters, Applications and Design', John Wiley and Sons, 1989.
- 2. Erickson R W, 'Fundamentals of Power Electronics', Chapman and Hall, 1997.
- 3. Vithyathil J, 'Power Electronics: Principles and Applications', McGraw Hill, 1995

Course Code & Name	EE695 [Digital Control System	าร		
Course Type	Elective	No of Credits		3	
Course Learning Objective (CLO)	This course gives an idea about implement in digital computers, u				
Prerequisites	Classical control, modern control				
	CO-PO	O Matrix			
Course Outcomes	Upon completion of the course, t	he students will be able	•	d Prograı omes (PC	
(COs)	to		P01	PO2	PO3
CO1	Understand the difference between and discrete time controllers	continuous time controller	2	2	3
CO2	Design of digital controllers		2	3	3
CO3	Implementation based on various ap	plications	2	3	3

Introduction to Discrete time systems - Analogies with continuous-time systems, mathematical models for LTI discrete-time systems, convolution representation and difference equations in advanced and delayed form, Z-transformation, analysis of first, second, and higher order systems, stability of discrete time systems, the Jury's criterion.

Modeling of Sampled Data Systems - Sampled Data System; Models of Continuous Time Systems; Naturally Occurring Discrete Time Systems; Discretization of Continuous Time Systems; Approaches to Controller Design and Testing.

Digital Signal Processing - Linear System-Basic Concepts, Basic Discrete Time Signals, Input– Output Convolution Models; Z-Transform-Motivation and Definition of Z-Transform, Z-Transform Theorems and Examples, Transfer Function, Inverse of Z-Transform; Frequency Domain Analysis-Basics, Fourier Series and Fourier Transforms, Sampling and Reconstruction, Filtering, Discrete Fourier Transform.

Transfer Function Approach to Controller Design - Structures and Specifications-Control Structures ,Proportional Control, Other Popular Controllers; Proportional, Integral, Derivative Controllers Discretization Techniques, Discretization of PID Controllers; Pole Placement Controllers-Pole Placement Controller with Performance Specifications, PID Tuning Through Pole Placement Control, Special Cases of Pole Placement Control; Minimum Variance Control-Generalized Minimum Variance Controller; Model Predictive Control-Generalized Predictive Control; Linear Quadratic Gaussian Control.

State Space Approach to Controller Design - State Space Techniques in Controller Design-Pole Placement, Estimators, Regulator Design, Linear Quadratic Regulator, Kalman Filter.

- 1. Digital Control, "Kannan M. Moudgalya", John Wiley & Sons, Ltd, 2007
- 2. Ogata K., "Discrete-time Control Systems", 2nd Edition, Prentice Hall Inc., New Jersey, 1992.

Course Code & Name	EE696 Pc	ower System Automat	ion		
Course Type	Elective	No of Credits		3	
Course Learning Objective (CLO)	To familiarize the students with the blocks, Supervisory Control ar Terminal Units(RTU), Master States	nd Data Acquisition(SCA		-	•
Prerequisites	Basic Knowledge of Transmission &	Distribution systems and M	easuring Ir	struments	6
	CO-PC	O Matrix			
Course Outcomes	Upon completion of the course, t	he students will be able	-	d Prograı omes (PC	
(COs)	10		P01	PO2	PO3
CO1	Understand the concepts of power s	ystem automation.	2	2	3
CO2	Understand the components of SCA	DA systems.	2	2	3
CO3	Comprehend the RTU, IED and automation systems	other components of	3	2	3
CO4	Understand the transfer of signals fro control terminal	om the field to an operator	3	2	3
CO5	Design an interoperable powers auto	omation system.	3	2	3

Evolution of Automation systems, History of Power system Automation, Supervisory Control and Data Acquisition(SCADA) Systems, Components of SCADA systems, SCADA Applications, SCADA in power systems, SCADA basic functions, SCADA application functions in Generation, Transmission and Distribution.

Advantages of SCADA in Power Systems, The Power system 'Field', Types of data & signals in the Power system, Flow of Data from the field to the SCADA Control Center. Building blocks of SCADA systems, Classification of SCADA systems.

Remote Terminal Unit (RTU), Evolution of RTUs, Components of RTU, Communication, Logic, Termination and Test/HMI Subsystems, Power supplies, Advanced RTU Functionalities.

Intelligent Electronic Devices (IEDs), Evolution of IEDs, IED functional block diagram, The hardware and software architecture of IED, IED Communication subsystem, IED advanced functionalities, Typical IEDs, Data Concentrators and Merging Units, SCADA Communication Systems.

Master Station, Master station software and hardware configurations, Server systems in the master station, Small, medium and large master station configurations, Global Positioning Systems, Master station performance, Human Machine Interface (HMI), HMI components, Software functionalities, Situational awareness, Case studies in SCADA

- 1. Mini S. Thomas, John D McDonald, Power Systems SCADA and Smart Grid, CRC Press, Taylor and Francis .
- 2. Electric Power Substation Engineering John D. Mc Donald CRC Press, Taylor and Francis
- 3. Control and Automation of Electrical Power Distribution systems, James Northcote- Green, R Wilson, CRC Press, Taylor and Francis.
- 4. Electric Power Distribution, Automation, Protection and Control, James Momoh, CRC press, Taylor and Francis.

		le Energ	yy Appli	cations	
Course Typ	Elective No of Cred	its		3	
Course Learning Objective (CLO)	To understand the modeling, controlling of the grand wind applications.	rid conne	cted con	verters fo	or PV
Prerequisite	s -				
	CO-PO Matrix				
Course Outcomes (COs)	Upon completion of the course, the students will to	be able	-	d Progra comes (P0 PO2	
CO1	Understand the grid requirements for PV and wind system under normal and abnormal grid conditions	turbine	2	2	3
CO2	Design and analyse the converters structure for connected PV and wind systems	or grid	3	3	3
CO3	Investigate various control aspects and techniques f connected converters under normal and abnorma conditions	•	3	2	3
deviatior Grid req	onal regulations, response to abnormal grid condition s), power quality issues on DC current injection, curr uirements for wind turbine systems, grid code ev	ent harmo	onics, po frequenc	wer facto and v	or. oltage
deviation Grid req deviation behavion Grid syn abnorma grid cond Overview condition	s), power quality issues on DC current injection, curr uirements for wind turbine systems, grid code ev under normal operation, active and reactive pow under grid disturbance. chronization with PV and wind turbine systems, ve I grid conditions, synchronous reference frame PLL litions, operation of different PLL techniques. v of control techniques for grid connected converter s, control of grid converters under grid faults, control power control under unbalanced grid condition, fle	ent harmo volution, ver contro oltage ve under ur s under u structures	onics, po frequenc ol in nor cctor und abalance unbalance s for unba	wer facto y and v mal ope er norma d and dis ed grid v alanced c	or. ration al and storted oltage
deviation Grid req deviation behavion Grid syn abnorma grid cond Overview condition injection	s), power quality issues on DC current injection, curr uirements for wind turbine systems, grid code ev under normal operation, active and reactive pow under grid disturbance. chronization with PV and wind turbine systems, ve I grid conditions, synchronous reference frame PLL litions, operation of different PLL techniques. v of control techniques for grid connected converter s, control of grid converters under grid faults, control power control under unbalanced grid condition, fle	ent harmo volution, ver contro oltage ve under ur s under u structures	onics, po frequenc ol in nor cctor und abalance unbalance s for unba	wer facto y and v mal ope er norma d and dis ed grid v alanced c	or. ration al anc stortec oltage current
deviation Grid req deviation behavion Grid syn abnorma grid cond Overview condition injection, limitation Reference 1. Ren	s), power quality issues on DC current injection, curr uirements for wind turbine systems, grid code ev under normal operation, active and reactive pow under grid disturbance. chronization with PV and wind turbine systems, ve I grid conditions, synchronous reference frame PLL litions, operation of different PLL techniques. v of control techniques for grid connected converter s, control of grid converters under grid faults, control power control under unbalanced grid condition, fle	ent harmony volution, ver contro- oltage ve under ur s under ur structures exible pov	onics, po frequenc ol in nor ector und abalanced unbalanced s for unba	wer facto y and v mal ope er norma d and dis ed grid v alanced c	oltage ration, al and storted current
deviation Grid req deviation behavion Grid syn abnorma grid cond Overview condition injection, limitation Reference 1. Ren pow 2. Ami	s), power quality issues on DC current injection, curr uirements for wind turbine systems, grid code ev under normal operation, active and reactive pow under grid disturbance. chronization with PV and wind turbine systems, ve I grid conditions, synchronous reference frame PLL litions, operation of different PLL techniques. v of control techniques for grid connected converter s, control of grid converters under grid faults, control power control under unbalanced grid condition, fle Books: mus Teodorescu, Marco Liserre, Pedro Rodriguez., Grid Co	ent harm volution, ver contro oltage ve under ur s under ur structures exible pov	onics, po frequenc ol in nor ector und abalanced unbalanced s for unba wer contr	wer facto y and v mal ope er norma d and dis ed grid v alanced c rol with c	oltage ration, al and storted oltage current
deviation Grid req deviation behavion Grid syn abnorma grid cond Overview condition injection limitation Reference 1. Ren pow 2. Ami Con 3. Ned	s), power quality issues on DC current injection, curr uirements for wind turbine systems, grid code ev under normal operation, active and reactive pow under grid disturbance. chronization with PV and wind turbine systems, we I grid conditions, synchronous reference frame PLL litions, operation of different PLL techniques. v of control techniques for grid connected converter s, control of grid converters under grid faults, control power control under unbalanced grid condition, fle Books: mus Teodorescu, Marco Liserre, Pedro Rodriguez., Grid Co er Systems, first edition, Wiley Publication 2011. rnaser Yazdani, Reza Iravani., Voltage Sourced Converter	ent harmony volution, ver contro- oltage ver under ur structures exible power powerters for ters in Po	onics, po frequenc ol in nor ector und abalanced unbalanced s for unba wer contr	wer facto y and v mal ope ler norma d and dis ed grid v alanced c rol with c roltaic and ems, Moc	oltage ration, al and storted oltage current current

Course Coo	FF699 Tonics in Po	wer Electronics and	Distribu	ted	
& Name		Generation	Distribu		
Course Typ	e Elective	No of Credits		3	
Course Learning Objective (CLO)	To understand the planning a generation.	nd operational issues	related	to distrik	outed
Prerequisite	s -				
	CO-PO	Matrix			
Course			Aligne	d Program	nme
Outcomes (COs)	Upon completion of the course, th to	le students will de adle	_	omes (PC PO2	
CO1	Understand the current scenario of d the need to implement DG sources	istributed generation and	1	2	2
CO2	Investigate the different types of interform of DGs.	faces for grid integration	2	3	2
CO3	Appraise the technical impacts of DGs distribution systems.	s upon transmission and	2	3	3
Course Co	ontent:				
inverter Design o reliability grade se Control current o Power o recent tr	al and unintentional islanding, powe nodelling, filtering requirements. of power converter components, DC in the design procedure, thermal cyc lection, and thermal design implicatio of grid interactive power converters, ontrol, DC bus control, converter fault uality, voltage unbalance, harmonics ends in power electronic DG interconr	bus design, considerati ling of power semiconduns. synchronization and ph ts, grid parallel and stand s, flicker, voltage and f	ions for p uctor mode ase lockin d alone op	ower los ules, insu ng techn peration.	s and Ilation iques,
Reference					
	hnical literature – papers published in pov nanarayanan V., Switched Mode Power C	-	nals and IE	EE standa	ards.
	ur R, Bergen, Vittal, Power Systems Anal		. 1999		
4. Neo	Mohan, Tore M, Undelnad, William P, I lications and Design; Wiley 2002.	· · ·		cs: Conve	erters,
5. Sec	ra A. S and Smith K, Microelectronic C versity Press, 2017.	Circuits: theory and Application	ations, (7	Edition) C	Dxford
6. Pro	akis J G and Manolakis D K, Digital Signa	Processing, Pearson 200	7.		
	ca Corradini, Dragan Maksimovic, Paolo quency Switched-Mode Power Converters	÷	ne, Digital	Control of	High
8. Pat	ick R. Schaumont, A Practical Introduction	n to Hardware/Software, Sp	pringer 2nc	Edition, 2	2014.

Course Code & Name	EE700 Wireless Se	nsor Networks and A	pplicati	ons		
Course Type	Elective	No of Credits		3		
Course Learning Objective (CLO)	To understand the concepts of Wireless Sensor Network protocols, issues and its applications					
Prerequisites	-					
	СО-РО	Matrix				
Course			Aligne	d Prograr	nme	
Outcomes	Outcomes Upon completion of the course, the students will be at			omes (PC		
(COs)	to		PO1	PO2	PO3	
CO1	Understand the concepts, node arch		3	3	2	
001	and communication protocols of Wire		5	5	2	
CO2	Identify the required hardware and s build a Wireless sensor network.	oftware components to	3	3	2	
CO3	Evaluate the performance of a Wirele	ss Sensor Networks	3	3	2	
Course Cont			U	U	-	
Network Ar Physical La Networks, I Assignmen Topology (Programmi WSN Appl Application	e Architecture - Hardware Compo chitecture - Sensor Network Scena ayer and Transceiver Design Cons low Duty Cycle Protocols and Wake t of MAC Addresses, Routing Proto Control, Clustering, Sensor Taskin ng Challenges, Node-level software ications -Home Control -Building s -Reconfigurable Sensor Networks nmental Engineering Applications.	rios, Gateway Concepts siderations, MAC Protoc eup Concepts, Address ocols ng and Control, Berkel e platforms, Node-level S g Automation -Industria	cols for W and Name ley Motes Simulators al Autom	ireless S Manage S, SENSI S. ation -M	ensor ment, Enuts, edical	
Reference Bo						
	/ireless Sensor Network Designs", Joh	-				
	nnamachari," Networking Wireless Sen	-				
	nd M. Younis, "A survey of routing prot I, Vol. 3, no. 3, pp. 325—349.	ocols in wireless sensor n	etworks", E	Elsevier Ad	d Hoc	
4. Holger Karl & 2005.	Andreas Willig, "Protocols and Archit	tectures for Wireless Sens	or Network	s", John \	Viley,	
	aby, Daniel Minoli, & Taieb Znati, "Win ohn Wiley, 2007.	eless Sensor Networks- To	echnology,	Protocols	, And	

Course Code & Name	EE701 Soft Switching Power Converters						
Course Type	Elective	No of Credits		3			
Course Learning Objective (CLO)	 To evaluate various soft switching techniques, Design and control of soft switching converters (Soft switching PWM converters, resonant power converters) Applications of soft switched converters in renewable energy, electric vehicle and power supplies 						
Prerequisites	Power converters, basic knowledge i	n power electronics					
		Do M. C.					
Course		-PO Matrix	Alio	ned Prog	ramme		
Outcomes	Upon completion of the course, the students will be able Outcomes (POs)						
(COs)	to		PO1	PO2	PO3		
CO1	Understand various soft switching Converters	g techniques for Power	3	2	3		
CO2	Select suitable soft switching semiconductor switches according to		3	2	3		
CO3	Analysis and design of various soft real-world applications.	switched converters for	3	3	3		

Evaluation of switching loss in hard switched converters, Introduction to soft switching schemes, Comparison between hard switched and soft switching converters, Resonant switches, zero voltage switching (ZVS), zero current switching (ZCS), zero voltage zero-current switching (ZVSZCS), Parameters and selection of semiconductor switches for soft switching.

Concept of resonance, Classification of Quasi-Resonant Switches, Non isolated Zero-Current-Switching Quasi-Resonant Converters, Non isolated Zero-Voltage-Switching Quasi-Resonant Converters, Series-Loaded Resonant Converters, Parallel-Loaded Resonant Converters, Seriesparallel resonant converters, isolated high order resonant converters.

PWM Soft switched converter, Active clamp power converters with soft switching, design of active clamp ZVS fly back converter, high voltage gains ZVS converters, high voltage gains ZVS/ZCS converters.

Soft switched PWM Full bridge converters, Theoretical Basis of Soft Switching for PWM Full-Bridge Converters, Classification of Soft-Switching PWM Full-Bridge Converters, Zero-VoltageSwitching PWM Full-Bridge Converters, Modulation of the Lagging Leg, Modulation of the Leading Leg, Dual active bridge (DAB) converters and modulation strategy.

Application of resonant and PWM soft switched converters I renewable energy, on –board battery charging, wireless power transfer, power factor correction, DAB converters in solid state transformer.

- 1. Robert Erickson, Dragan Maksimovic "Fundamentals of power electronics", Springer publications, 2001.
- 2. Marian K. Kazimierczuk, Dariusz Czarkowski, "Resonant Power Converters", Wiley Publications, Second Edition, 2010.
- 3. Simon S. Ang, Alejandro Oliva, "Power-Switching Converters" CRC Press Publications, 3nd edition, 2010.
- 4. Xinbo Ruan, "Soft-Switching PWM Full-Bridge Converters: Topologies, Control, and Design" Wiley Publications, 2014.
- 5. Ivo Barbi, F. Pottker "Soft commutation Isolated DC/DC Converters" Springer Publications, 2019.

& Name	EE702 Solar PV Systems			
Course Type	Elective No of Credits		3	
Course Learning Objective (CLO)	To understand the concepts, operation, MPPT techniques applications of solar PV systems	, power co	nditioning	g and
Prerequisites	-			
	CO-PO Matrix			
Course Outcomes	Upon completion of the course, the students will be able	-	d Progra omes (P0	
(COs)	to	PO1	PO2	PO3
CO1	Understand the fundamental concept of PV cell modelling and different electrical array configuration schemes	2	2	2
CO2	Understand and implement various MPPT control strategies and selection of power converters for PV systems	3	3	2
CO3	Study the different applications for off-grid and on-grid PV systems	2	3	2
Course Con		•	•	
diode, PV (tied (TCT) reconfigura	ding of PV arrays, causes, effect of partial shading on PV p characteristics, interconnection schemes, series and parall , honey comb(HC), bridge linked (BL), reconfiguration technique ation techniques, Su Do Ku based reconfiguration technique	el connec chniques, e.	tion, total electrical	cross array
diode, PV of tied (TCT) reconfigura Maximum voltage or parasitic ca open circui techniques insulation of Power con converter,	characteristics, interconnection schemes, series and parall, honey comb(HC), bridge linked (BL), reconfiguration tec	el connec chniques, e. iation mer cal conduc d, look up chod, artific algorithm f ethod, two g, buck co charge co	tion, total electrical thod, fee tance m table m cial intelli or non-u stage m onverter, ontroller,	dbacl ethod ethod gence niforn ethod boos shun
diode, PV of tied (TCT) reconfigura Maximum voltage or parasitic ca open circui techniques insulation of Power con converter, controller, interconne Application systems, P module inv	characteristics, interconnection schemes, series and parall , honey comb(HC), bridge linked (BL), reconfiguration technique ation techniques, Su Do Ku based reconfiguration technique power point tracking algorithm, direct methods, different current method, perturb and observe method, increment apacitance method, indirect methods, curve fitting method t voltage sensing method, short circuit current sensing met , artificial neural network, fuzzy logic, genetic algorithm, a conditions, Fibonacci search method, short current pulse me ditioning for PV System, maximum power point tracking buck boost converter, CUK converter, SEPIC converter, series controller, inverters, inverter operation, power ction techniques.	el connec chniques, e. iation met cal conduc d, look up chod, artific algorithm f ethod, two g, buck co charge ca quality s top system al inverter, n of PV t	tion, total electrical thod, fee tance m table m cial intelli or non-u stage m onverter, ontroller, tandards	dback ethod ethod gence niform ethod boos shun , gric ghting verter patter
diode, PV of tied (TCT) reconfigura Maximum voltage or parasitic ca open circui techniques insulation of Power con converter, controller, interconne Application systems, F module inv	characteristics, interconnection schemes, series and parall , honey comb(HC), bridge linked (BL), reconfiguration technique ation techniques, Su Do Ku based reconfiguration technique power point tracking algorithm, direct methods, different current method, perturb and observe method, increment apacitance method, indirect methods, curve fitting method t voltage sensing method, short circuit current sensing met , artificial neural network, fuzzy logic, genetic algorithm, a conditions, Fibonacci search method, short current pulse me ditioning for PV System, maximum power point tracking buck boost converter, CUK converter, SEPIC converter, series controller, inverters, inverter operation, power ction techniques.	el connec chniques, e. iation met cal conduc d, look up chod, artific algorithm f ethod, two g, buck co charge ca quality s top system al inverter, n of PV t	tion, total electrical thod, fee tance m table m cial intelli or non-u stage m onverter, ontroller, tandards	dback ethod ethod gence niform ethod boos shun , gric ghting verter pattery
diode, PV of tied (TCT) reconfigura Maximum voltage or parasitic ca open circui techniques insulation of Power con converter, controller, interconne Application systems, F module inv charging a Reference Bo 1. Cheta	characteristics, interconnection schemes, series and parall , honey comb(HC), bridge linked (BL), reconfiguration technique ation techniques, Su Do Ku based reconfiguration technique power point tracking algorithm, direct methods, different current method, perturb and observe method, increment apacitance method, indirect methods, curve fitting method t voltage sensing method, short circuit current sensing met , artificial neural network, fuzzy logic, genetic algorithm, a conditions, Fibonacci search method, short current pulse me ditioning for PV System, maximum power point tracking buck boost converter, CUK converter, SEPIC converter, series controller, inverters, inverter operation, power ction techniques.	el connec chniques, e. iation met cal conduc d, look up chod, artific algorithm f ethod, two g, buck co charge ca quality s top system al inverter, n of PV to tection and	tion, total electrical thod, fee tance m table m cial intelli or non-u stage m onverter, ontroller, tandards n, street li string in oattery, b d regulati	cross array dback ethod ethod gence niform ethod boost shun , gric ghting verter, oattery on.
diode, PV of tied (TCT) reconfigura Maximum voltage or parasitic ca open circuit techniques insulation of Power con converter, controller, interconne Application systems, F module inv charging a Reference Bo 1. Cheta Learni 2. Van O	characteristics, interconnection schemes, series and parall , honey comb(HC), bridge linked (BL), reconfiguration technique ation techniques, Su Do Ku based reconfiguration technique power point tracking algorithm, direct methods, different current method, perturb and observe method, increment apacitance method, indirect methods, curve fitting method t voltage sensing method, short circuit current sensing met , artificial neural network, fuzzy logic, genetic algorithm, a conditions, Fibonacci search method, short current pulse me ditioning for PV System, maximum power point tracking buck boost converter, CUK converter, SEPIC converter, series controller, inverters, inverter operation, power ction techniques.	el connec chniques, e. iation met cal conduc d, look up chod, artific algorithm f ethod, two g, buck co charge co quality s top system al inverter, n of PV to cection and ies and Ap	tion, total electrical thod, fee tance m table m cial intelli or non-u stage m onverter, ontroller, tandards h, street li string invo battery, b d regulati	dback ethod ethod gence niform ethod boost shun , gric ghting verter, on.
diode, PV of tied (TCT) reconfigura Maximum voltage or parasitic ca open circui techniques insulation of Power con converter, controller, interconne Application systems, F module inv charging a Reference Bo 1. Cheta Learni 2. Van O Bristol	characteristics, interconnection schemes, series and parall , honey comb(HC), bridge linked (BL), reconfiguration technique ation techniques, Su Do Ku based reconfiguration technique power point tracking algorithm, direct methods, different current method, perturb and observe method, increment apacitance method, indirect methods, curve fitting method t voltage sensing method, short circuit current sensing met , artificial neural network, fuzzy logic, genetic algorithm, a conditions, Fibonacci search method, short current pulse me ditioning for PV System, maximum power point tracking buck boost converter, CUK converter, SEPIC converter, series controller, inverters, inverter operation, power ction techniques. of solar PV and energy storage - standalone systems, roof to V water pumping systems, grid connected systems, centra verter, need for energy storage in PV systems, selection and discharging characteristics, battery life time, battery prot Doks: n Singh Solangi, 'Solar Photovoltaics-Fundamentals, Technolog ing Pvt Ltd, Delhi,2011. verstraeton and Metens R.P., 'Physics, Technology and use of P	el connec chniques, e. iation met cal conduc d, look up chod, artific algorithm f ethod, two g, buck co charge ca quality s top system al inverter, n of PV to cection and ies and Ap	tion, total electrical thod, fee tance m table m cial intelli or non-u stage m onverter, ontroller, tandards n, street li string in oattery, b d regulati	cross array dback ethod ethod gence niform ethod boos shun , grid ghting verter pattery on.

Course Code & Name	EE703 E-Vehicle Technology and Mobility					
Course Type	Elective	No of Credits		3		
Course Learning Objective (CLO)	This introduces the fundamental concepts, principles, analysis and design of electric vehicles (EVs)					
Prerequisites	Electrical Machines and Power Converters, power conversion techniques					
	CO-PO	O Matrix				
Course Outcomes	Opon completion of the course, the students will be		d Prograi omes (PC			
(COs)	able to		PO1	PO2	PO3	
CO1	Understand the operating principle	e of electric vehicles.	2	2	2	
CO2	Choose a suitable motor and pow EVs.	er electronic interface for	3	2	3	
CO3	Explain various battery technolog	es.	2	2	2	
CO4	Understand various charging tech	nologies for EVs	3	2	2	
CO5	Understand policy perspectives mobility.	and innovation in e-	2	2	2	

Introduction to electric vehicles: EV verses gasoline vehicles, vehicle dynamics fundamentals, edrivetrain, Electric motor, Power electronic in electric vehicles, Regenerative braking.

Battery Technology for EVs: Storage technologies for EV, Battery working principles, Battery losses, Li-ion batteries, Battery pack and battery management system.

Charging Technology of EVs: AC charging - Type 1,2,3, DC charging, Fast charging and its limitations, Smart charging and applications, Vehicle to X(V2X), X2V technology.

Future trends in e-Vehicles: Wireless charging of EV, On-road charging of EV, Battery swap technology, Solar powered EVs, Charging EVs from renewables. Vehicle communication protocol.

E-mobility: electrification challenges, business, connected mobility and autonomous mobility case study in Indian Roadmap Perspective, Policy- EVs in infrastructure system, integration of EVs in smart grid, social dimensions of EVs

- 1. Iqbal Hussain, "Electric & Hybrid Vehicles Design Fundamentals", Second Edition, CRC Press, 2011.
- 2. James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons, 2003.Mehrdad Ehsani, Yimin Gao,
- 3. Ali Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals", CRC Press, 2010.
- 4. Sheldon S. Williamson, Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles, Springer, 2013.
- 5. Sandeep Dhameja, "Electric Vehicle Battery Systems", Newnes, 2000 .http://nptel.ac.in/courses/108103009/
- 6. Tariq Muneer and Irene Illescas García, "The automobile, In Electric Vehicles: Prospects and Challenges", Elsevier, 2017.

Course Code & Name	EE704 Design of Embe	dded Controllers for S	Smart Mi	cro-Gri	d	
Course Type	Elective	No of Credits		3		
Course Learning Objective (CLO)	To enable the learner to understand the concepts of embedded controlle with its Objectives: Application to smart grids.					
Prerequisites	Digital Systems , Microprocessors/Microcontrollers					
	CO-P	O Matrix				
Course Outcomes	utcomes Upon completion of the course, the students will be able Outcomes (POs)					
(COs)	to		P01	PO2	PO3	
CO1	Understand the architecture of Emb	-	2	3	2	
CO2	Identify suitable peripherals with the		2	2	3	
CO3	Understand the requirements of embedded networks	the real time OS and	3	3	3	
CO4	Illustrate the typical use of FPGA as	embedded controller	3	3	3	
CO5	Apply the concepts of embedded co	ntrollers for smart grid.	3	3	3	
 Sensors and Special ICs – Voltage Sensor, Current Sensor, Speed Sensor, RMS calculation IC, Battery Management IC, Opto-couplers and Current amplification transistors Real time operating systems(RTOS)–real time kernel– OS tasks–task states– task scheduling–interrupt processing – Embedded Networks –Distributed Embedded Architecture– Hardware and Software Architectures, Networks for embedded systems– I2C, CANBus, Ethernet, Internet, Network– Based design– Design Example: Elevator Controller. Typical FPGA board qualitative analysis: FPGA IC interfacing with peripherals: ADC, DAC, display (LED, LCD), Communication networks like Ethernet. Study of a Smart Micro-grid model – Sensors interfacing with FPGA board – Design of Source and Load Controllers – Communication between the controllers – Concepts of Source and Load 						
management.	ooks:					
Kaufman Pu 2. C.M.Krishna 3. Herma K., R 2ndEdition, 4. WilliamHohl 5. Nazzareno I Interscience	f, 'Computers as Components: Princip Iblishers,3rd Edition, 2012. a, Kang G. Shin ,'Real time systems', Real Time Systems: Design for Distrib 2011. , 'ARM Assembly Language, Fundam Rossetti, "Managing Power Electronic Publications, 2006. iewski, "Smart Grid Infrastructure &	McGrawHill,2010. uted Embedded Applications entals and Techniques', CR s: VLSI and DSP-driven Cor	s, Kluwer A C Press, 20 mputing sys	cademic, 009 stems:, W	iley-	

Course Code & Name	EE705 Design of Magne	etics for Power Electro	onic App	olicatior	าร	
Course Type	Elective	No of Credits		3		
Course Learning Objective (CLO)	This course introduces the fundamental concepts and design of magnetics for power electronic Applications					
Prerequisites	Electrical Machines and Power Elec	tronics				
	CO-PC	D Matrix				
Course Outcomes	Upon completion of the course, the students will be able Outcomes (POs)					
(COs)	to		P01	PO2	PO3	
CO1	Review the concepts of different type	es of magnetic devices.	2	1	2	
CO2	Choose a suitable core and wire for the design of inductor and transformers. 3 2 2				2	
CO3	Understand the effects in the windings of the transformers at high frequencies.				2	
CO4	Measurement of performance para transformers.	meters of inductors and	2	2	2	
Course Con	tent:			-		

Basic magnetics theory: Review of basic magnetics- transformer modelling-loss mechanisms in magnetic devices-eddy currents in winding conductors-several types of magnetic devices and their B-H loops.

Inductor design: Introduction- magnet wire-wire insulation- restrictions on inductors-window utilization factor- temperature rise of inductors-mean turn length of inductors-area product method-inductor design for power electronic applications.

Transformer design: Introduction-area product method-optimum flux density-area product for sinusoidal voltages-high frequency transformer design for power electronic applications.

High frequency effects in the windings: Skin effect factor-proximity effect factor-proximity effect factor for an arbitrary waveform-reducing proximity effects by interleaving the windings-leakage inductance in transformer windings.

Measurements: measurement of inductance- B-H loop-losses in a transformer-capacitance in transformer windings.

- 1. Robert W. Erickson and Dragan Maksimovic, "Fundamentals of Power Electronics", Third edition, Springer.
- 2. Marian K. Kazimierczuk, "High-Frequency Magnetic Components", second edition, Wiley 2013.
- 3. W.G. Hurley and W.H. Wolfle, "Transformers and Inductors for power electronics Theory, design, and applications", Wiley 2013.
- 4. Ned Mohan, Tore M. Undeland and William P. Robbins, "Power Electronics: Converters, Applications and Design", Third edition, Wiley 2007.
- 5. L.Umanand and S.R. Bhat, "Design of magnetic components for switched mode power converters", New age international 1992.
- 6. V.Ramanarayanan, "Course material on switched mode power conversion", Department of Electrical Engineering Indian Institute of Science Bangalore, 2017.

Course Code & Name	EE706 Power M	anagement	t Integr	rated	Circuit	5	
Course Type	Elective No of Credits 3						
Course Learning Objective (CLO)	 To Review the modern management chips. Modelling and Design of vol IC Implementation of power 	Itage and curr	rent mo	de coi	ntrollers.		power ms.
Prerequisites	Fundamentals of Power Electronics	and digital elec	ctronics				
	CO-PC	O Matrix					
Course Outcomes		Upon completion of the course, the students will be able to		ble	-	d Progra omes (P	
(COs)	10				PO1	PO2	PO3
CO1	Understand the Integrated circuit of management chips.	design concep	ots in po	wer	2	1	2
CO2	Design and Development of power linear and switching regulators.	management	circuits f	or	3	2	3
CO3	Apply switching regulator concepts Systems.	s for Energy H	Harvestir	ng	2	2	2
Course Cont							

Introduction to Power Management - Need, Linear versus Switching Regulator, Types of DC-DC Converters and Application. Type of Regulator in a Multi-Chip System; Performance Parameters - Efficiency, Accuracy, Line and Load Regulation, Line and Load Transient, PSRR; Remote versus Local Feedback, Point-of-Load Regulator, Kelvin Sensing, Droop Compensation; Current Regulators and their Applications; Bandgap Voltage Reference.

Introduction to Linear Regulator, review of Feedback Systems and Bode Plots, Loop Gain AC Analysis, Stability Criterion and Phase Margin. Finding the Poles of the Error Amplifier; Stabilising a Linear Regulator - Frequency Compensation Techniques, Dominant Pole Compensation. LDO with NMOS Pass Element; Load Regulation and Output Impedance of LDO; Line Regulation and PSRR of LDO; Sources of Error in a Regulator

Designing the Ramp Generator in a Pulse-Width Modulator, PWM modulators Trailing, Leading and Dual-Edge PW Modulators; Control Techniques for DC-DC Converters; Voltage Mode Control. Designing the Gate-Driver (Gate Buffer and Non-Overlap Clock Generator), Design Considerations of the Error Amplifier; Delays Associated with Pulse-Width Modulators.

Modelling of a DC-DC Converter, Loop Gain and Stability Analysis using Continuous-Time Model. Compensating a Voltage-Mode-Controlled Buck Converter; Designing Type-I (Integral), Type-II (PI) and Type-III (PID) Compensators; Implementation of Compensators using Op Amp-RC and Gm-C Architectures. Compensating a Voltage-Mode-Controlled Buck Converter; Designing Type-I (Integral), Type-II (PI) and Type-III (PID) Compensators; Implementation of Compensators using Op Amp-RC and Gm-C Architectures, Finding Compensation Parameters; Design Examples with Simulation and Demonstrations.

Introduction to Energy-Harvesting Systems, Energy-Harvesting Sources. Concepts of Energy-Harvesting Circuits, Energy-Harvesting Circuits for AC and DC source, MPPT tracking.

- 1. Chen, Ke-Horng. "Power Management Techniques for Integrated Circuit Design". John Wiley & Sons, 2016.
- 2. Hella, Mona M., and Patrick Mercier, eds. "Power Management Integrated Circuits". CRC Press, 2017.
- 3. Erickson, Robert W., and Dragan Maksimovic. "Fundamentals of power electronics". Springer Science & Business Media, 2007.
- 4. Grant, Duncan Andrew, and John Gowar. "Power MOSFETS: theory and applications." John Wiley & Sons, New York, 1989.
- 5. Razavi, Behzad. 'Design of analog CMOS integrated circuits. MC Graw Hill Education, 2005.

& Name	EE708 Electric Vehicle Charging S	Systems		
Course Type	Elective No of Credits		3	
Course Learning Objective (CLO)	To equip students with a thorough understanding of elect technologies, with a focus on the design of advanced p charging enabling them to effectively address cha transportation.	power con	nverters	for EV
Prerequisites	Power Electronics			
	CO-PO Matrix			
Course	Upon completion of the course, the students will be able	Aligne	d Progra	mme
Outcomes	to		omes (Po	
(COs)		PO1	PO2	PO3
CO1	Design of battery technology for EVs.	3	3	2
CO2	Explore various power electronic converters for on-board battery chargers.	2	2	3
CO3	Understand the converter technologies for semi-fast chargers	2	1	3
CO4	Appreciate the concept of EV fast-chargers and renewable energy-based EV fast charging and its infrastructure	1	2	3
Course Con	tent:			
	ermal management – standards.			
analysis, and standards. Semi-Fast ch phase chargi perspectives. Fast chargers converters –	p power converters and PWM techniques for EV chargers: S design of on-board chargers (OBCs) – single-stage OB argers: Introduction, operation, analysis, and design of in ng – three-phase charging – multiphase charging – stan s: Introduction, operation, analysis, and design of fast charg solated, non-isolated, modular DC/DC converters – standar	Cs – two tegrated (idards. Ra gers – grid	OBCs – ange ext	BCs – single- ension AC/DC
analysis, and standards. Semi-Fast ch phase charging perspectives. Fast chargers converters – Renewable e	power converters and PWM techniques for EV chargers: S design of on-board chargers (OBCs) – single-stage OB argers: Introduction, operation, analysis, and design of in ng – three-phase charging – multiphase charging – stan : Introduction, operation, analysis, and design of fast charge	Cs – two tegrated (idards. Ra gers – grid ds. charging -	DBCs - DBCs - ange ext d facing / - Wind e	BCs – single- ension AC/DC
analysis, and standards. Semi-Fast ch phase charging perspectives. Fast chargers converters – Renewable e	b power converters and PWM techniques for EV chargers: S design of on-board chargers (OBCs) – single-stage OB argers: Introduction, operation, analysis, and design of in ng – three-phase charging – multiphase charging – stan s: Introduction, operation, analysis, and design of fast charg solated, non-isolated, modular DC/DC converters – standar nergy based EV charging methods: Solar PV-based EV c arging – Hydrogen energy for EV charging. Challenges, case	Cs – two tegrated (idards. Ra gers – grid ds. charging -	DBCs - DBCs - ange ext d facing / - Wind e	BCs – single- ension AC/DC
analysis, and standards. Semi-Fast ch phase charge perspectives. Fast chargers converters – Renewable e based EV char Reference B 1. Ibrahi	b power converters and PWM techniques for EV chargers: S design of on-board chargers (OBCs) – single-stage OB argers: Introduction, operation, analysis, and design of in ng – three-phase charging – multiphase charging – stan s: Introduction, operation, analysis, and design of fast charg solated, non-isolated, modular DC/DC converters – standar nergy based EV charging methods: Solar PV-based EV c arging – Hydrogen energy for EV charging. Challenges, case	Cs – two tegrated (idards. Ra gers – grid ds. charging - <u>e studies,</u>	DBCs – DBCs – ange ext d facing / - Wind e and polic	BCs - single- ension AC/DC energy- cies
analysis, and standards. Semi-Fast ch phase chargin perspectives. Fast chargers converters – Renewable e based EV cha Reference B 1. Ibrahi system 2. Brunc	power converters and PWM techniques for EV chargers: S design of on-board chargers (OBCs) – single-stage OB argers: Introduction, operation, analysis, and design of in ng – three-phase charging – multiphase charging – stan s: Introduction, operation, analysis, and design of fast charg solated, non-isolated, modular DC/DC converters – standar nergy based EV charging methods: Solar PV-based EV c arging – Hydrogen energy for EV charging. Challenges, case ooks: m Dincer, Halil S.Hamut, and Nader Javani, "Thermal managemer	Cs – two tegrated (idards. Ra gers – grid rds. charging - <u>e studies,</u> nt of electrid	DBCs – DBCs – ange ext d facing / - Wind e and polic c vehicle b	BCs – single- ension AC/DC energy- cies
analysis, and standards. Semi-Fast ch phase charging perspectives. Fast chargers converters – Renewable en based EV char Reference B 1. Ibrahing system 2. Brund vehich 3. Ali Em	 power converters and PWM techniques for EV chargers: S design of on-board chargers (OBCs) – single-stage OB argers: Introduction, operation, analysis, and design of in ng – three-phase charging – multiphase charging – stan introduction, operation, analysis, and design of fast charg solated, non-isolated, modular DC/DC converters – standar nergy based EV charging methods: Solar PV-based EV carging – Hydrogen energy for EV charging. Challenges, case ooks: m Dincer, Halil S.Hamut, and Nader Javani, "Thermal managemer ns", Wiley – 2014. scrosati, jurgen garche and werner tillmetz, "Advances in batter 	Cs – two tegrated (idards. Ra gers – grid rds. charging - <u>e studies,</u> nt of electric ry technolo	DBCs – ange ext d facing / - Wind e and polic c vehicle b gies for e	BCs – single- ension AC/DC energy- cies
analysis, and standards. Semi-Fast ch phase chargin perspectives. Fast chargers converters – Renewable en based EV char Reference B 1. Ibrahin system 2. Brund vehich 3. Ali En and S 4. Sheld	 power converters and PWM techniques for EV chargers: S design of on-board chargers (OBCs) – single-stage OB argers: Introduction, operation, analysis, and design of in ng – three-phase charging – multiphase charging – stan Introduction, operation, analysis, and design of fast charg solated, non-isolated, modular DC/DC converters – standar nergy based EV charging methods: Solar PV-based EV c arging – Hydrogen energy for EV charging. Challenges, case ooks: m Dincer, Halil S.Hamut, and Nader Javani, "Thermal managemenns", Wiley – 2014. scrosati, jurgen garche and werner tillmetz, "Advances in batter es" Elesevier – 2015. madi, Mehrdad Ehsani, and John M.Miller, "Vehicular Electric Power 	CS – two tegrated (idards. Ra gers – grid ds. charging - e studies, nt of electric ry technolo r Systems -	DBCs – DBCs – ange ext d facing / - Wind e and polid c vehicle b gies for e – Land, Se	BCs – single- ension AC/DC energy- cies pattery lectric ea, Air
analysis, and standards. Semi-Fast ch phase chargin perspectives. Fast chargers converters – Renewable en based EV char Reference B 1. Ibrahin system 2. Brund vehich 3. Ali En and S 4. Sheld Vehich	 power converters and PWM techniques for EV chargers: S design of on-board chargers (OBCs) – single-stage OB argers: Introduction, operation, analysis, and design of in ng – three-phase charging – multiphase charging – stan s: Introduction, operation, analysis, and design of fast charg solated, non-isolated, modular DC/DC converters – standar nergy based EV charging methods: Solar PV-based EV carging – Hydrogen energy for EV charging. Challenges, case ooks: m Dincer, Halil S.Hamut, and Nader Javani, "Thermal managemer ns", Wiley – 2014. scrosati, jurgen garche and werner tillmetz, "Advances in batter es" Elesevier – 2015. nadi, Mehrdad Ehsani, and John M.Miller, "Vehicular Electric Power pace Vehicles", Marcel Dekker, Inc. 2004. on S.Williamson, "Energy Management Strategies for Electric a 	CS – two tegrated (idards. Ra gers – grie ds. charging - e studies, at of electric ry technolo r Systems - nd Plug-in	DBCs – ange ext d facing / - Wind e and polie c vehicle b gies for e – Land, Se Hybrid E	BCs – single- ension AC/DC energy- cies pattery lectric ea, Air lectric

Course Code & Name	EE712 Home Energy Management Systems					
Course Type	Open Elective	No of Credits	3			
Course Learning Objective (CLO)	 efficiency, automation, challenges. To realize the important smart homes. To understand the conditioned to the conditio	 To understand the concept of home energy management, energy efficiency, automation, components, architecture and associated challenges. To realize the importance of communication standards and protocols for smart homes. 				
Prerequisites						
	CO-PO	O Matrix				
Course Outcomes	Upon completion of the course, t	he students will be able	Aligned Programme Outcomes (POs)			

Outcomes	to		omes (PC	JS)
(COs)	to	P01	PO2	PO3
CO1	Understand and analyze the importance of home energy management system for optimal utilization of electrical energy.	3	1	3
CO2	Understand the communication standards and protocols for smart homes.	2	1	3
CO3	Design and analyze various appliances for smart home energy management.	3	1	3

Introduction – Concept and application of home energy management systems (HEMS) and automation, requirements and design considerations - efficiency of home automation system, architecture and components of HEMS.

Energy efficiency - Home energy conservation, energy sources in household building, system control - lighting, heating, energy benchmarking, energy efficiency improvement, green building – LEED concept & examples.

Smart Home Protocols: Communication protocols such as Bluetooth Mesh, Wi-Fi, ZigBee, PAN, and IEEE 802.15.4 standard, architecture-OSI model, ZigBee mesh networks, device types, green power, coexistence with Wi-Fi, IEEE 802.15.4 spectrum usage, and Z-Wave architecture.

Introduction to IoT – Sensing, actuation, basics of networking, communication protocols, sensor networks, machine-to-machine communications. interoperability in IoT.

Smart Appliances - Smart plugs, smart fans, smart Matic kit, smart EV charging, smart monitoring and maintenance devices, smart lighting, fire alarm, parking lights. Current trends and future challenges.

Text Books:

- 1. Antonio Moreno-Munoz, Neomar Giacomini (Editor), "Energy Smart Appliances: Applications, Methodologies, and Challenges", Wiley-Blackwell, 1st Edition, 2023.
- 2. Fengji Luo, Gianluca Ranzi, Zhao Yang Dong, Building Energy Management Systems and Techniques Principles, Methods, and Modelling, 1st Edition February 21, 2024, Imprint Elsevier.
- 3. Introduction to Industrial Internet of Things and Industry 4.0, Sudip Misra, Chandana Roy, Anandarup Mukherjee, CRC press,2021.
- 4. Kostas Siozios, Dimitrios Anagnostos, Dimitrios Soudris, Elias Kosmatopoulos, IoT for Smart Grids: Design Challenges and Paradigms, Springer publishers, 2019.

- 1. Vinod Kumar Khanna, Fundamentals of Solid-State Lighting: LEDs, OLEDs, and Their Applications in Illumination and Displays, CRC press, 2014, 1st Edition.
- 2. Alasdair Gilchrist, Industry 4.0: The Industrial Internet of Things, Apress publishers, 2016.
- 3. Craig Di Louie, Advanced Lighting Controls: Energy Savings, Productivity, Technology and Applications, River publishers, 2006, e-book, 2021,1st Edition.
- 4. Geoff Levermore, "Building Energy Management Systems: An Application to Heating, Natural Ventilation, Lighting and Occupant Satisfaction", Routledge, 2nd Edition, 2000