

MASTER OF TECHNOLOGY DATA ANALYTICS

CURRICULUM

[EFFECT FROM 2024 – 2025 ONWARDS]

DEPARTMENT OF COMPUTER APPLICATIONS NATIONAL INSTITUTE OF TECHNOLOGY TIRUCHIRAPPALLI - 620015

VISION OF THE INSTITUTE

To be a university globally trusted for technical excellence where learning and research integrate to sustain society and industry.

MISSION OF THE INSTITUTE

- To offer undergraduate, postgraduate, doctoral and modular programmes in multidisciplinary / inter-disciplinary and emerging areas.
- To create a converging learning environment to serve a dynamically evolving society.
- To promote innovation for sustainable solutions by forging global collaborations with academia and industry in cutting-edge research.
- To be an intellectual ecosystem where human capabilities can develop holistically.

VISION OF THE DEPARTMENT

• Towards a school of Information Science and Technology conforming to international standards

MISSION OF THE DEPARTMENT

- To offer state-of-art education in Information Science and Technology
- To provide strong theoretical foundation complemented with extensive practical training
- To inculcate value-based, socially committed professionalism to the cause of overall development of students and society

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1	Prepare students to become Data Science professionals with comprehensive knowledge and skills to produce data analysis platforms for emerging requirements.
PEO2	Prepare graduates to become continuous learners with aptitude for teaching and research with societal focus.
PEO3	Prepare graduates to become Consultant / Entrepreneurs in the IT / ITES industry with confidence.

PROGRAMME OUTCOMES (POs)

PO1	An ability to independently carry out research /investigation and development work to solve practical problems
PO2	An ability to write and present a substantial technical report/document
PO3	Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program, higher than the requirements in the appropriate bachelor program

CURRICULUM FRAMEWORK / FLEXIBLE CURRICULUM / NEP 2020 / M.Tech – Data Analytics

Components	Number of Courses	Number of Credits
Programme Core (PC)	6 / Year	42
Programme Elective (PE)	6 / Year	
Essential Laboratory Requirements (ELR)	3 / Year	6
Internship / Industrial Training / Academic Attachment (I/A)	1	2
Open Elective (OE) /Online Course(OL)	2	6
Project Phase-I	1	12
Project Phase-II	1	12
Total	20	80

CURRICULUM

SEMESTER I

Code	Course of Study	Credit
CA611	Mathematical Foundations for Data Analytics	4
CA613	Advanced Data Structures and Algorithms	4
CA615	Machine Learning Techniques	3
CA617	Big Data Analytics	4
CA6AX	Elective-I	4
CA6BX	Elective-II	3
CA601	Machine Learning Lab	2
TOTAL		24

SEMESTER II

Code	Course of Study	Credit
CA610	Deep Learning and its Applications	3
CA612	Image and Video Analytics	3
CA6CX	Elective-III	4
CA6DX	Elective-IV	4
CA6EX	Elective-V	3
CA6FX	Elective-VI	3
CA602	Deep Learning Lab	2
CA604	Image and Video Analytics Lab	2
TOTAL		24

SUMMER TERM (evaluation in the III semester)

Code	Course of Study	Credit
CA648	Internship / Industrial Training / Academic Attachment	2

SEMESTER III

Code	Course of Study	Credit
CA649	Project Phase I	12

SEMESTER IV

Code	Course of Study	Credit
CA650	Project Phase II	12

SEMESTER I-IV(To be completed between I and IV semesters)

Code	Course of Study	Credit
	Open Elective I/Online Course 1	3
	Open Elective II/Online Course 2	3
		6

PROGRAMME ELECTIVES (PE)

Elective-I

SI.No.	Code	Course of Study	Credits
1.	CA6A1	Data Mining and Warehousing	4
2.	CA6A2	Soft Computing Techniques	4
3.	CA6A3	Next Generation Data Base Systems	4

Elective-II

SI.No.	Code	Course of Study	Credits
1.	CA6B1	Distributed and Cloud Computing	3
2.	CA6B2	Block chain Technology	3
3.	CA6B3	Cognitive Sciences	3

Elective-III

SI.No.	Code	Course of Study	Credits
1.	CA6C1	DevOps	4
2.	CA6C2	Analytics for Strategic Market Planning	4
3.	CA6C3	Financial Risk Analytics and Management	4

Elective-IV

SI.No.	Code	Course of Study	Credits
1.	CA6D1	Data Visualization	4
2.	CA6D2	Pattern Recognition	4
3.	CA6D3	Natural Language Processing	4

Elective-V

SI.No.	Code	Course of Study	Credits
1.	CA6E1	Web Analytics	3
2.	CA6E2	Federated Learning	3
3.	CA6E3	Human Resource Analytics	3

Elective-VI

SI.No.	Code	Course of Study	Credits
1.	CA6F1	Intelligent Systems and Process Automation	3
2.	CA6F2	Social Network Analytics	3
3.	CA6F3	Supply Chain Analytics	3

OPEN ELECTIVE (OE) OFFERED BY THE DEPARTMENT

SI. No.	Code	Course of Study	Credits
1.	CA615	Machine Learning Techniques	3

COURSE OUTCOME AND PROGRAMME OUTCOME MAPPING

PROGRAMME CORE (PC)

Course Outcomes: On successful completion of the course, students will be able to:

•		CO	Course outcomes	PO1	PO2	PO3
Course Code	Course Title		At the end of the course student will be able			
		CO1	Understand basic mathematical tools required for Data Analytics	1	1	2
CA611	Mathematical Foundations for Data Analytics	CO2	Apply mathematical concepts to research problems in Machine learning domain.	2	2	3
		CO3	Apply the mathematical tools learnt to model and draw conclusion in a more precise manner.	2	2	3
		CO4	Develop abilities for developing a solution for a given problem starting from problem and data to presenting results.	1	1	1
		CO1	Write structured pseudo code for the given problem.	3	3	2
		CO2	Use advanced data structures to solve real-time problems.	2	0	2
CA613	Advanced Data Structures and Algorithms	CO3	Investigate new and emerging data structures and their potential applications.	3	0	2
		CO4	Analyse the time and space complexity of algorithms that interact with advanced data structures.	2	0	3
CA615	Machine Learning Techniques	CO1	Select real-world applications that needs machine learning based solutions.	2	2	3
CAUIJ	Ĩ	CO2	Implement and apply machine learning algorithms.	3	3	3
		CO3	Select appropriate algorithms for solving a particular group of real-world problems.	3	2	3

		CO4	Recognize the characteristics of machine learning techniques that are useful to solve real-world problems	1	1	2
		CO1	Describe big data and use cases from selected business domains	3	3	1
CA617	Big Data Analytics	CO2	List the components of Hadoop and Hadoop Eco- System	3	3	3
		CO3	Access and Process Data on Distributed File System	3	2	1
		CO4	Manage Job Execution in Hadoop Environment	2	3	3
		CO1	Explore the essentials of Deep Learning based architectures.	3	0	2
CA610	Deep Learning and its Applications.	CO2	Design and Develop Deep Neural Networks for solving real world problems that require artificial intelligence-based solutions	2	0	3
		CO3	Understand about various regularization techniques, including dropout, batch normalization, and weight decay, to prevent overfitting in deep learning models.	2	0	2
		CO4	Learn techniques for handling and processing large-scale datasets, including data augmentation, data pre- processing, and efficient data loading techniques	2	0	3
		CO1	Describe the fundamental principles of image and video analysis and have an idea of their application.	3	2	3
	Image and Video	CO2	Apply image and video analysis in real world pro	3	1	3
CA612	Analytics	CO3	Apply fundamental algorithms in Image Processing and analyse their applicability for real world application	2	0	2
		CO4	Design and develop innovative computer applications	2	3	2

LABORATORY

Course Code	Course Title	CO	Course Outcomes	P01	PO2	PO3
			At the end of the course student will be able			
		CO1	Implement and apply machine learning algorithms to solve problems.	2	0	2
CA601	Machine Learning Lab	CO2	Select appropriate algorithms for solving a of real-world problems.	3	2	2
		CO3	Use machine learning techniques in high- performance computing environment to solve real-world problems	3	3	3
		CO1	Implementandapplydeeplearningalgorithmstosolveproblems.	2	0	2
CA602	Deep Learning Lab	CO2	Gain practical experience in developing, deploying deep learning models using popular frameworks such as TensorFlow, PyTorch, or Keras	3	2	2
		CO1	Implement and apply deep learning-based image processing and computer vision to solve problems.	3	3	2
CA604	Image and Video Analytics Lab	CO2	Use deep learning- based image processing and computer vision techniques in a high- performance computing environment to solve real-world problems	3	3	2

PROGRAMME ELECTIVES (PE)

Course Code	Course Title	СО	Course outcomes	PO1	PO2	PO3
		CO1	Learn the task of data mining as an important phase of the knowledge discovery process	2	0	2
C 46 4 1	Data Mining and	CO2	Understand the mining methodologies	3	0	3
	Warehousing	CO3	Study and Implement machine learning algorithms	З	0	З
		CO4	Apply Data Mining for Knowledge extraction from real-world databases.	2	3	2
	Soft Computing Techniques	CO1	Explain the basics of soft computing and their suitable industry related applications	3	0	2
CA6A2		CO2	Apply neural network principles and algorithms for given problems	3	0	3
		CO3	Apply the principles of fuzzy and hybrid algorithms for real time applications	3	0	3
		CO4	Solve problems using evolutionary algorithms	3	3	2
		CO1	Understand how NoSQL databases differ from relational databases from a theoretical perspective.	3	1	3
CA6A3	Next Generation Data Base Systems	CO2	Design NoSQL database management systems.	3	2	3
	~ ,	CO3	Select a particular NoSQL database for specific use cases and develop next generation database systems for any application	3	2	3

		CO1	Acquire knowledge of the concepts and technologies of distributed and cloud Computing.	3	2	3
CA6B1	Distributed and Cloud Computing	CO2	Demonstrate where to apply parallel and distributed techniques.	3	2	3
		CO3	Use various performance criteria to evaluate the quality of the cloud architecture.	3	2	3
		CO1	Explain design principles of Bitcoin and Ethereum.	3	2	3
CA6B2	Block chain Technology	CO2	Explain the Simplified Payment Verification protocol.	3	2	3
CHODZ	block chain Teenhology	CO3	Interact with a block chain system by sending and reading transactions.	3	2	3
		CO4	Design, build, and deploy a distributed application.	3	2	3
	Cognitive Sciences	CO1	Understand the brain and its role in Cognitive Science	2	0	2
CA6B3		CO2	Correlate symbolic structures with cognitive functions	2	0	2
		CO3	Know the principles behind dynamical systems in cognitive related functions	3	0	2
		CO4	Design systems involving cognitive features using intelligent techniques	2	0	2
		CO1	Understand the principles of Agile Methodologies	3	0	3
CA6C1	DevOps	CO2	Differentiate application deployment, continuous integration and continuous delivery	2	0	2
		CO3	Acquire knowledge in CAMS based development	2	0	2

		CO4	Develop real world problems using tools and platforms	3	0	3
		CO1	Understand the purpose and importance of marketing analytics.	3	0	3
CA6C2		CO2	Apply segmentation, targeting and positioning in marketing scenarios.	2	0	2
	Analytics for Strategic Market Planning	CO3	Take data empowered strategic marketing decisions by using analytical techniques	3	0	2
		CO4	Sharpen their analytical skills by getting exposure to computer-based marketing models and tools for decision making	2	0	2
	Financial Risk Analytics and Management	CO1	Identify and categorize the various risks faced by an organization.	2	0	3
CA6C3		CO2	Explore the tools and practices needed to assess and evaluate financial risks.	2	0	2
		CO3	Explore risk management practices in an industry.	2	0	3
		CO4	Identify and solve legal issues that impact financial and other risk affecting business	3	0	3
		CO1	Understand and apply the fundamental design principles of data visualization	3	0	3
CA6D1	Data Visualization	CO2	Present data by applying different data visualization techniques for better communication	3	0	3
		CO3	Analyse data and communicate information through visual representation	3	0	3

		CO4	Identify and solve legal issues that impact financial and other risk affecting business	3	2	3
		CO1	Summarize the various techniques involved in pattern recognition	3	1	3
CA6D2	Pattern Recognition	CO2	Categorize the various pattern recognition techniques into supervised and unsupervised.	3	2	З
		CO3	Illustrate the artificial neural network-based pattern recognition	3	2	3
		CO4	Discuss the applications of pattern recognition in various applications	3	3	2
		CO1	Identify the patterns in text and pre-process the large text corpus	3	1	2
CA6D3	Natural Language Processing	CO2	Use classical model for NLP	3	2	2
		CO3	Adopt embedding and Deep learning models in NLP	3	2	3
		CO4	Apply the NLP concepts for solving the Applications	3	2	2
		CO1	Understand the factors influencing the business through the web site data	3	0	3
CA6E1	Web Analytics	CO2	Understand various types of analysis involved in web site data (users, business data, etc.)	3	0	3
		CO3	Practice applying Google Analytics APIs to improve the business	3	2	3

		CO4	Understand the factors influencing the business through the web site data	3	0	2
		CO1	Knowledge of the basic concepts, architecture and applications of Federated Learning.	3	0	3
CA6E2	Federated Learning	CO2	Understanding of new research and application trends in Federated Learning.	3	0	3
		CO3	Ability to deploy real- world Federated Learning projects.	3	0	3
		CO4	Hands-on experience in applying Federated Learning tools to solve privacy-preserving AI challenges	3	3	3
	Human Resource Analytics	CO1	Identify necessary skills to carry out the personnel roles in the domain of HR.	3	0	3
		CO2	Identify skilled personnel and job tasks to achieve mission-critical goals.	3	0	3
CA6E3		CO3	Align organization's mission and goals with key metrics and benchmarks.	3	0	3
CA6E2 CA6E3		CO4	Apply HR analytics to improve organizational performance by providing better insights on human resources data.	3	0	2
CA6F1	Intelligent Systems and Process Automation	CO1	Understand the Significance of AI and various techniques used in intelligent applications.	3	0	3
	Process Automation	CO2	Apply basic principles of Expert systems and their fundamentals, and learning.	3	0	2

		CO3	Understand the RPA and various platforms available.	3	0	3
		CO4	To show the importance of RPA in solving real world problems	3	0	3
		CO1	Interpret the social network structure	3	0	3
CA6F2	F2 Social Network Analytics	CO2	Model and visualize the social network.	3	0	3
		CO3	Mine the user relations in the social network.	2	3	3
		CO4	Analyze social network content	3	0	3
		CO1	Understand the concepts of supply chain analytics.	3	0	3
CA6F3	Supply Chain Analytics	CO2	Apply various supply chain management concepts.	3	3	2
		CO3	Improve an existing supply chain and design an efficient supply chain in alignment with the strategic goals of the company	1	0	3

3 - High; 2 - Medium; 1 - Low

SYLLABUS Semester – I

Course Code	:	CA611
Course Title	:	MATHEMATICAL FOUNDATIONS OF DATA ANALYTICS
Type of Course	:	PC
Prerequisites	:	NIL
Contact Hours	:	50
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

Course Learning Objectives (CLO)

CLO1	Deduce complex tasks by various Mathematical logic.
CLO2	Solve the problems using the concepts of Linear Equations, Discrete and Continuous Probabilities

Course Content

Systems of Linear Equations – Matrices – Solving Systems of Linear Equations – Vector Spaces – Linear Independence – Basis and Rank – Linear Mappings – Affine Spaces – Norms – Inner Products – Lengths and Distances – Angles and Orthogonality – Orthonormal Basis – Orthogonal Complement – Inner Product of Functions – Orthogonal Projections – Rotations

Determinant and Trace – Eigenvalues and Eigenvectors – Cholesky Decomposition – Eigen decomposition and Diagonalization – Singular Value Decomposition – Differentiation of Univariate Functions – Partial Differentiation and Gradients – Gradients of Vector - Valued Functions – Gradients of Matrices – Useful Identities for Computing Gradients

Discrete and Continuous Probabilities – Sum Rule, Product Rule – and Bayes' Theorem – Summary Statistics and Independence – Gaussian distribution – Conjugacy and the Exponential Family – Change of Variables/Inverse Transform – Optimization Using Gradient Descent – Constrained Optimization and Lagrange Multipliers – Convex Optimization

Tabular data – Power and the computation of sample size – Advanced data handling – Multiple regression – Linear models – Logistic regression – Rates and Poisson regression Nonlinear curve fitting. Density Estimation – Recursive Partitioning – Smoothers and Generalised Additive Models – Survivals Analysis – Analysing Longitudinal Data – Simultaneous Inference and Multiple Comparisons – Meta-Analysis – Principal Component Analysis – Multidimensional Scaling Cluster Analysis

Sampling Distributions and Descriptive Statistics - The Central Limit Theorem – Sampling Distributions (Chi-Square, t, F, z) – Test of Hypothesis – Testing for Attributes – Mean of Normal Population – One-tailed and two-tailed tests – F-test and Chi-Square test – Analysis of variance ANOVA – One way and two-way classifications

References

1.	Sheldon M. Ross, "Introduction to Probability and Statistics for Engineers and Scientists", Academic Press, 2009.
2.	Marc Peter Deisenroth, A. Aldo Faisal and Cheng Soon Ong, "Mathematics for Machine Learning", Cambridge University Press, 2020.

Course Outcomes (CO)

CO1	Understand basic mathematical tools required for Data Analytics
CO2	Apply mathematical concepts to research problems in Machine learning domain.
CO3	Apply the mathematical tools learnt to model and draw conclusion in a more precise manner.
CO4	Develop abilities for developing a solution for a given problem starting from problem and data to presenting results.

Course Code	:	CA613
Course Title	:	ADVANCED DATA STRUCTURES AND ALGORITHMS
Type of Course	:	PC
Prerequisites	:	NIL
Contact Hours	:	50
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To introduce different advanced data structures and algorithms.		
CLO2	To understand the usage of advanced algorithms in real time applications		

Course Content

Top-Down Splay Trees – Red-Black Trees – Bottom-Up Insertion – Top-Down Deletion – Trees – Suffix Arrays and Suffix Trees – Linear-Time Construction of Suffix Arrays and Suffix Trees – Tree structures – The *k*-d Trees.

B-trees: Definition – operations – Fibonacci heaps: Definition – operations – van Emde Boas Trees: Preliminary approaches – A recursive structure – The van Emde Boas tree – Data Structures for Disjoint Sets: Disjoint-set operations – Linked-list representation of disjoint sets – Disjoint-set forests.

Greedy Algorithms – Elements – An activity-selection problem – Huffman codes and Minimum Spanning tree algorithms – Graph Algorithms – Single source shortest paths problem – All-pairs shortest paths problem – Flow Networks.

Backtracking and Branch-and-Bound strategies with applications – Randomized algorithms – Examples.

NP concepts – Introduction – NP-hard and NP-complete problems – Definitions and Properties – Satisfiability problem – Reducibility – Cook's Theorem (without proof) – Approximation algorithms.

Lab Experiments:

- 1. Exercise to perform operations pertaining to Red-Black Tree
- 2. Exercise to construct suffix arrays in linear time (strictly linear)
- 3. Exercise to perform operations pertaining to B-tree and its variants
- 4. Exercise to find min-flow n the given flow network
- 5. Exercise to perform operations pertaining to Fibonacci heaps

REFERENCES:

1.	M.A.Weiss, "Data Structures and Problem Solving using Java", 4 th Edition, Addison Wesley, 2009.
2.	T.H. Cormen, C.E. Leiserson, R.L. Rivest and C.Stein, "Introduction to Algorithms", 3rd Edition, MIT Press, 2009
3.	Robert Sedgewick and Kevin Wayne, "Algorithms", 4th Edition, Addison Wesely, 2011.
4.	teve S. Skiena, "The Algorithm Design Manual", 2 nd Edition, Springer, 2008.
5.	George T. Heineman, Gary Pollice and Stanley Selkow, "Algorithms in a Nutshell", 2 nd Edition, O'Reilley, 2016
6.	Kleinberg and Tardos, "Algorithm Design", Pearson, 2006.
7.	Udi Manber, "Introduction to Algorithms: A Creative Approach", Addison Wesley, 1989.
8.	Anany Levitin, "The Design and Analysis of Algorithms", 3 rd Edition, Pearson, 2012.

Course Outcomes (CO)

CO1	Write structured pseudo code for the given problem.
CO2	Use advanced data structures to solve real-time problems.
CO3	Investigate new and emerging data structures and their potential applications.
CO4	Analyse the time and space complexity of algorithms that interact with advanced data structures.

Course Code	:	CA615
Course Title	:	MACHINE LEARNING TECHNIQUES
Type of Course	:	PC
Prerequisites	:	To introduce different advanced data structures and algorithms.
Contact Hours	:	40
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To introduce the basic concepts and techniques of Machine Learning.
CLO2	To develop the skills in using recent machine learning software for solving practical problems
CLO3	To be familiar with a set of well-known supervised, semi-supervised and unsupervised learning algorithms

Course Content

INTRODUCTION – Learning – Designing a Learning System – Traditional Learning vs Machine Learning – Various types of Machine Learning: Supervised Learning – Unsupervised Learning – Reinforcement Learning – Machine Learning workflow – Machine Learning issues and challenges – Machine Learning Applications in real world problems.

SUPERVISED LEARNING – Predictive Models: Regression – Multivariate Regression – Types of Regression Models – Estimation of Regression coefficients -Evolution metrics of regression models – issues and challenges – applications. – Classification Models: Introduction – Different types of classifiers: Naive Bayes – Decision Tree – Logistic Regression – K-Nearest Neighbor – Perceptron- Types of perceptron - Artificial Neural Networks – Support Vector Machine – Evolution metrics for supervised learning – Issues and challenges – applications.

UNSUPERVISED LEARNING –Clustering Models: Partitioning based clustering – Hierarchical based clustering – Density based clustering – Grid based clustering – Mixture Models and EM Algorithm – Fuzzy k-Means Algorithm – Evolution metrics for clustering models - Dimensional Reduction Techniques: Need – Various types: PCA – ICA – FA – t-SNE - Case studies.

ENSEMBLE LEARNING – Boosting – AdaBoost Algorithm – Bagging – Random Forest – No-Free-Lunch Theorem – XGBoost Algorithm – Stacking – Voting – Ensemble Diversity – Error Decomposition – Diversity Measures – Evaluating Ensembles of Classifiers – Case studies.

REINFORCEMENT LEARNING – Introduction to Reinforcement Learning – Learning Task – Example of Reinforcement Learning in Practice – Learning Models for Reinforcement – (Markov Decision process – Q Learning – Q Learning function – Q Learning Algorithm – SARSA algorithm) – Nondeterministic Rewards and Actions – Applications of Reinforcement Learning.

REFERENCES:

1.	Ethem Alpaydin, Introduction to Machine Learning, 4th edition, MIT Press 2020.
2.	Bishop, Christopher M., Pattern Recognition and Machine Learning. Springer-Verlag, 2006.
3.	Zhi-Hua Zhou, Ensemble Methods: Foundations and Algorithms, CRC Press, 2012.
4.	Lior Rokach, Ensemble Learning: Pattern Classification using Ensemble Methods, 2 nd ed., World Scientific, 2019.
5.	Tom M. Mitchell, Machine Learning, McGraw-Hill Education (India) Private Limited, 2013.
6.	Stephen Marsland, Machine Learning: An Algorithmic Perspective, CRC Press, 2014.
7.	Andrew Glassner, Deep Learning from basics to practice. Volume1 & 2, Kindle Edition, 2018.

COURSE OUTCOMES:

CO1	Select real-world applications that needs machine learning based solutions.
CO2	Implement and apply machine learning algorithms.
CO3	Select appropriate algorithms for solving a particular group of real-world problems.
CO4	Recognize the characteristics of machine learning techniques that are useful to solve real-world problems.

Course Code	:	CA617
Course Title	:	BIG DATA ANALYTICS
Type of Course	:	PC
Prerequisites	:	NIL
Contact Hours	:	50
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To understand the Big Data Platform and its Use cases.
CLO2	To provide an overview of Apache Hadoop Ecosystem.
CLO3	To provide HDFS Concepts and Interfacing with HDFS.
CLO4	To understand Map Reduce concepts.

Course Content

Introduction to Big Data and Hadoop: Types of Digital Data – Introduction to Big Data – Big Data Analytics – History of Hadoop – Analysing Data with Hadoop – Hadoop Streaming – Hadoop Eco System – Applications of Big Data: marketing – fraud detection – risk assessment – credit risk management – healthcare – medicine – advertising.

HDFS (Hadoop Distributed File System): Design of HDFS – HDFS Concepts – Command Line Interface – Hadoop file system interfaces – Data flow – Data Ingest with Flume and Sqoop – Hadoop I/O: Compression – Serialization – Avro and File-Based Data structures.

Map Reduce: Anatomy of a Map Reduce - Job Run – Failures – Job Scheduling – Shuffle and Sort – Task Execution – Map Reduce Types and Formats – Map Reduce Features - Composing map reduce calculations.

Hadoop Ecosystem: Introduction to PIG – Execution Modes of Pig – Comparison of Pig with Databases – Grunt – Pig Latin – User Defined Functions – Data Processing operators - Hbase – data model and implementations – Hbase clients – Hbase examples – Hive – data types and file formats – HiveQL data definition – HiveQL data manipulation – HiveQL queries.

Mining Data Streams: Stream Data Model – Sampling Data in the Stream – Filtering Streams – Counting Distance Elements in a Stream – Estimating Moments – Counting Ones in Window – Decaying Windows.

REFERENCES:

1.	Tom White "Hadoop: The Definitive Guide" Third Edition, O'reily Media, 2012.
2.	Seema Acharya, Subhasini Chellappan, "Big Data and Analytics" Wiley Publication, 2015.
3.	Raj Kamal, Preeti Saxena, "Big Data Analytics: Introduction to Hadoop, Spark, and Machine-
	Learning", McGraw Hill, 2018.
4.	Jay Liebowitz, "Big Data and Business Analytics" CRC press, 2013.
5.	Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with
	Advanced Analytics", John Wiley & sons, 2012.
6.	Jure Leskovec, Anand Rajaraman, Jeffrey Ullman. "Mining of Massive Datasets." Cambridge
	University Press. 2014.

COURSE OUTCOMES:

CO1	Describe big data and use cases from selected business domains
CO2	List the components of Hadoop and Hadoop Eco-System
CO3	Access and Process Data on Distributed File System
CO4	Manage Job Execution in Hadoop Environment

Course Code	:	CA601
Course Title	:	MACHINE LEARNING LAB
Type of Course	:	ELR
Prerequisites	:	NIL
Contact Hours	:	30
Course Assessment Methods	:	Continuous Assessment, End Assessment

CLO1	To introduce basic machine learning techniques.
CLO2	To develop the skills in recent machine learning software for solving practical problems in high-performance computing environment.
CLO3	To develop the skills in applying appropriate supervised, semi-supervised or unsupervised learning algorithms for solving practical problems
CLO4	To introduce basic machine learning techniques.

Exercise of Machine learning techniques shall have the following components:

- Problem Selection
- Data Collection & Generation
- Data Preprocessing Techniques
- Design and Develop Machine Learning Models
 - Regression Models (SLR, MLR, SVR)
 - Clustering Models (K-Means, CLARA, DBSCAN)
 - Classification Models (NB, DT, SVM. KNN, ANN, LR)
 - Ensemble Learning Models (RF, AdaBoost, XGB)
 - Reinforcement Learning Models (Q-Learning, SARASA learning)
- Model Evaluation Metrics
- Model Deployment

COURSE OUTCOMES:

CO1	Implement and apply machine learning algorithms to solve problems.
CO2	Select appropriate algorithms for solving a of real-world problems.
CO3	Use machine learning techniques in high-performance computing environment to solve real- world problems

Semester – II

Course Code	:	CA610
Course Title	:	DEEP LEARNING AND ITS APPLICATIONS
Type of Course	:	PC
Prerequisites	:	NIL
Contact Hours	:	40
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

Course Learning Objectives (CLO)

CLO1	To introduce the techniques of deep learning.
CLO2	To explore various deep learning techniques to solve the real-world problems

Course Content

INTRODUCTION – Learning – Various types Learning – Machine Learning: issues and challenges – CPU vs GPU – massive parallelism – Introduction to Deep Learning – Deep Learning Models: CNN – RNN – AE – GAN – real world applications of Deep Learning – Packages used for Deep Learning.

DEEP LEARNING – Introduction – shallow neural networks – Deep neural networks – Architecture Design – Convolutional Neural Networks – Introduction – Convolution (1D and 2D) – Pooling – Training of network – Hyper parameter tuning – pre-trained models: AlexNet – GoogleNet – Resnet – VGG-16 – VGG-19 – ImageNet – Case study of CNN (Healthcare – Agriculture – Stock Market – Weather Forecasting).

SEQUENCE MODELING – Recurrent Neural Network (RNN) Model – Types of RNNs – Vanishing Gradients with RNN – Gated Recurrent Unit – Long Short-Term Memory (LSTM) – Deep Recurrent Neural Networks – RNN for Time Series – Transformer Network Models - Case Studies on Recent Real-World Problems.

DEEP REINFORCEMENT LEARNING- Foundations of Reinforcement Learning – Valuebased models – Policy-based models – Multi-Agent Reinforcement Learning – Deep Q-Learning – SARSA Learning – Real World Applications.

AUTOENCODERS AND GENERATIVE ADVERSARIAL NETWORKS - Autoencoders – Architecture of Autoencoders – Types of Autoencoders – Applications of Autoencoders –

Generative Models – Generative Adversarial Networks – Variational Autoencoders - Applications – Autoencoders vs Generative Adversarial Networks – Use Cases.

REFERENCES:

1.	Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press 2016.
2.	Andrew Glassner, Deep Learning from basics to practice. Volume 1 & 2, Kindle Edition, 2018.
3.	François Chollet, Deep Learning with Python, Manning Publications, 2018.

COURSE OUTCOMES:

CO1	Explore the essentials of Deep Learning based architectures.				
CO2	Design and Develop Deep Neural Networks for solving real world problems that require				
	artificial intelligence-based solutions				
CO3	Understand about various regularization techniques, including dropout, batch normalization,				
	and weight decay, to prevent overfitting in deep learning models.				
CO4	Learn techniques for handling and processing large-scale datasets, including data augmentation,				
	data pre-processing, and efficient data loading techniques				

Course Code	:	CA612
Course Title	:	IMAGE AND VIDEO ANALYTICS
Type of Course	:	PC
Prerequisites	:	NIL
Contact Hours	:	40
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To teach the fundamentals of digital image processing, image and video analysis.
CLO2	To understand the real time, use of image and video analytics.
CLO3	To demonstrate real time image and video analytics applications and others

Course Content

Digital image representation – Visual Perception – Sampling and Quantization – Basic Relations between Pixels – Mathematical Tools Used in Digital Image Processing: Fundamental Operations – Vector and Matric Operations – Image Transforms (DFT – DCT – DWT – Hadamard).

Fundamentals of Spatial Filtering - Spatial Correlation and Convolution – Smoothing – Blurring – Sharpening – Edge Detection – Basics of Filtering in the Frequency Domain: smoothing – blurring – sharpening – Histograms and Basic Statistical Models of Image.

Image Segmentation – Region based Segmentation – Image and Video Segmentation – Image and Video Enhancement – Image and Video Compression.

Object Classification and Detection – CNN – LSTM – Transformers – Image classification and Object detection Models.

Applications and Case Studies – Image Annotation- Face Detection and Recognition – Object counting - Object Tracking.

REFERENCES:

1.	R.C. Gonzalez and R.E. Woods." Digital Image Processing". 3rd Edition. Addison Wesley, 2007.
2.	W. Härdle, M. Müller, S. Sperlich, A. Werwatz, "Nonparametric and Semi parametric Models", Springer, 2004.
3.	Rick Szelisk, "Computer Vision: Algorithms and Applications", Springer 2011.
4.	Jean-Yves Dufour, "Intelligent Video Surveillance Systems", Wiley, 2013.
5.	Caifeng Shan, Fatih Porikli, Tao Xiang, Shaogang Gong, "Video Analytics for Business Intelligence", Springer, 2012.
6.	AsierPerallos, Unai Hernandez-Jayo, Enrique Onieva, Ignacio Julio García Zuazola, "Intelligent Transport Systems: Technologies and Applications", Wiley, 2015.
7.	Basudeb Bhatta, "Analysis of Urban Growth and Sprawl from Remote Sensing Data", Springer, 2010.
8.	Ian Good Fellow, Yoshua Bengio, Aaron Courville, "Deep Learning", MIT Press, 2017

COURSE OUTCOMES:

CO1	Describe the fundamental principles of image and video analysis and have an idea of their application.
CO2	Apply image and video analysis in real world pro
CO3	Apply fundamental algorithms in Image Processing and analyse their applicability for real world application
CO4	Design and develop innovative computer applications

Course Code	:	CA602
Course Title	:	DEEP LEARNING LAB
Type of Course	:	ELR
Prerequisites	:	NIL
Contact Hours	:	30
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To introduce basic deep learning techniques.
CLO2	To develop the skills in using recent deep learning software for solving practical problems in high-performance computing environment.
CLO3	To develop the skills in applying appropriate deep learning algorithms for solving practical problems

Exercise of Deep learning techniques shall have the following components:

- Problem Selection
- Data Collection & Generation
- Data Preprocessing Techniques
- Design and Develop Deep Learning Models
 - o CNN based Models
 - o RNN based Models
 - o Deep Q-learning & SARASA learning models
 - GAN & VAE Models
- Model Evaluation Metrics
- Model Deployment

COURSE OUTCOMES:

CO1	Implement and apply deep learning algorithms to solve problems.
CO2	Use deep learning techniques in a high-performance computing environment to solve real-world problems
CO3	Gain practical experience in developing, training, and deploying deep learning models using popular frameworks such as TensorFlow, PyTorch, or Keras

Course Code	:	CA603
Course Title	:	Image and Video Analytics Lab
Type of Course	:	ELR
Prerequisites	:	NIL
Contact Hours	:	30
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To introduce image processing and computer vision techniques.
CLO2	To develop the skills in implementing image processing algorithms using recent image processing software for solving practical problems.
CLO3	To develop the skills in developing deep learning-based image processing and computer vision algorithms for solving practical problems

- Exercises on implementation of image processing algorithms (enhancement, edge detection, segmentation)
- Exercises on computer vision methods
- Exercise of Advanced Computer Vision methods shall have the following components:
 - Problem Selection
 - Image Data/Video Collection & Generation
 - Data Preprocessing Techniques
 - Design and Develop Deep Learning Models
 - CNN based Models
 - RNN based Models
 - Transformer based Models
 - Model Evaluation Metrics
 - Model Deployment

COURSE OUTCOMES:

CO1	Implement and apply deep learning-based image processing and computer vision to solve problems.
CO2	Use deep learning-based image processing and computer vision techniques in a high- performance computing environment to solve real-world problems

Semester – III

CA649 PROJECT WORK – PHASE I

• Project work of 6 Months duration.

Semester – IV

CA650 PROJECT WORK – PHASE II

• Project work of 6 Months duration with submission of thesis and viva-voce Examination

Semester – I: ELECTIVES

Course Code	:	CA6A1
Course Title	:	DATA MINING AND WAREHOUSING
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	50
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

Course Learning Objectives (CLO)

CLO1	To develop and understand the necessity of Data Mining, the strengths and limitations of popular data mining techniques and how they can be applied in business applications.
CLO2	To understand the overall architecture of a data warehouse and methods for data gathering and data pre-processing.
CLO3	To explore data mining and data warehousing applications in various real-world datasets.

Course Content

Fundamentals of data mining and Data Preprocessing: Motivation – Importance – Definition of Data Mining - Data Mining Functionalities - Classification of Data Mining systems - Data Mining Task Primitives - Integration of a Data Mining System with a Database or a Data Warehouse System - Major issues in Data Mining. Types of Data Sets and Attribute Values - Basic Statistical Descriptions of Data - Data Visualization - Measuring Data Similarity Data – Pre-processing: Need for Pre-processing the Data - Data Cleaning - Data Integration and Transformation - Data Reduction - Discretization and Concept Hierarchy Generation

Data Warehouse and OLAP Technology for Data Mining: Data Warehouse - Multidimensional Data Model - Data Warehouse Architecture - Data Warehouse Implementation - Further Development of Data Cube Technology - From Data Warehousing to Data Mining Data Cube Computation and Data Generalization: Efficient Methods for Data Cube Computation – Further Development of Data Cube and OLAP Technology

Mining Frequent Patterns – Associations and Correlations: Basic Concepts on Frequent Itemsets - Efficient and Scalable Frequent Item set Mining Methods - Mining various kinds of Association Rules – Apriori Algorithm – FP-tree algorithm - From Association Mining to Correlation Analysis – Constraint-Based Association Mining

Classification and Prediction: Issues Regarding Classification and Prediction - Classification by Decision Tree Induction - Bayesian Classification - Rule-Based Classification - Classification by Back propagation - Support Vector Machines – Prediction - Accuracy and Error measures - Evaluating the accuracy of a Classifier or a Predictor - Ensemble Methods

Clustering Methods: Cluster Analysis Introduction - Types of Data in Cluster Analysis - A Categorization of Major Clustering Methods- Partitioning Methods - Hierarchical Methods - Density-Based Methods - GridBased Methods - Model-Based Clustering Methods - Clustering High-Dimensional Data - Constraint Based Cluster Analysis; Outlier Analysis; Mining Stream - Time-Series and Sequence Data - Graph Mining - Mining the Web Data

REFERENCES:

1.	Jiawei Han & Micheline Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann
	Publishers, Elsevier, 2012.
2.	Margaret H Dunham, Data Mining Introductory and Advanced Topics, 2 nd edition, Pearson
	Education, 2006.
3.	Arun K Pujari, Data Mining Techniques, Universities Press, 2010
4.	Amitesh Sinha, Data Warehousing, Thomson Learning, 2007.
5.	Xingdong Wu, Vipin Kumar, The Top Ten Algorithms in Data Mining, CRC Press, 2009.

COURSE OUTCOMES:

CO1	Learn the task of data mining as an important phase of the knowledge discovery process
CO2	Understand the mining methodologies
CO3	Study and Implement machine learning algorithms
CO4	Apply Data Mining for Knowledge extraction from real-world databases.

Course Code	:	CA6A2
Course Title	:	SOFT COMPUTING TECHNIQUES
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	50
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To learn the techniques of soft computing.
CLO2	To know artificial neural network concepts.
CLO3	To learn the applications of evolutionary and genetic algorithms.
CLO4	To know the design of fuzzy controller and rough sets

Course Content

Soft Computing: Introduction – Soft Computing versus Hard Computing – Need – Tools and Techniques – Applications

Artificial Neural Network (ANN): Biological Foundation of Neural Network – Neural Model and Network Architectures – Perceptron Learning – Supervised Hebbian Learning – Backpropagation – Associative Learning – Competitive Networks – Hopfield Network – Computing with Neural Nets – and applications of Artificial Neural Network

Evolutionary and Genetic Algorithms: Concepts – Operators – Function Optimization – Dominance – Swarm Intelligence – Colony systems – Modeling Collective Behavior in Social Insects – Division of Labor and Task Allocation – Applications

Fuzzy Logic: Fuzzy Sets – Operations on Fuzzy sets – Fuzzy Relations – Fuzzy Systems – Fuzzy controller – Fuzzy Decision Making – Fuzzy Clustering – Applications. Rough Sets: Imprecise Categories Approximations and Rough Sets – Reduction of Knowledge, Decision Tables – Applications

Neuro Fuzzy and Soft Computing: Adaptive Neuro-Fuzzy Inference System Architecture – Hybrid Learning Algorithm – Learning Methods that Cross-fertilize ANFIS and RBFN – Coactive Neuro Fuzzy Modeling – Framework – Neuron Functions for Adaptive Networks – Neuro Fuzzy Spectrum - Hybridization

REFERENCES:

1.	J. S. R. Jang, C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing, PHI, 2015
2.	G. J. Klir, and B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice- Hall, 2011
3.	S. Rajasekaran and G. A. V. Pai, Neural Networks, Fuzzy Logic and Genetic Algorithms, PHI, 2017
4.	D. Goldberg, Genetic Algorithm in Search, Optimization and Machine Learning, Pearson Education, 1989
5.	E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems, Oxford Press, 1999
6.	K. L. Du, M. N. S. Swamy, Neural Networks in a Soft computing Framework, Springer, 2008
7.	R. A. Aliev, R. R. Aliev, Soft Computing and Its Applications, World Scientific, 2001
8.	D. Ruan, Intelligent Hybrid Systems, Springer, 2011.

COURSE OUTCOMES:

CO1	Explain the basics of soft computing and their suitable industry related applications
CO2	Apply neural network principles and algorithms for given problems
CO3	Apply the principles of fuzzy and hybrid algorithms for real time applications
CO4	Solve problems using evolutionary algorithms

Course Code	:	CA6A3
Course Title	:	NEXT GENERATION DATABASE SYSTEMS
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	50
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To explore the fundamental concepts of next generation database systems.
CLO2	To design and develop next generation database systems.

Course Content

Information Retrieval - Data warehouse and Data Mining - Relational Databases – Database Revolutions – Relational Database Management Systems - Hierarchical Data Management Systems - Network Data Management Systems.

Big Data Revolution – Sharding - CAP Theorem – Consistency - ACID and BASE - Birth of NoSQL - Types of NoSQL Databases - The NewSQL.

Document Databases – XML and XML Databases - MongoDB – Couch DB - JSON Document Databases - Key value Databases – DynamoDB – Riak.

Graph Databases – Graph Models – Properties – Neo4J – IBMGraph – Column Oriented Databases – Cassandra – HBase – In-memory Databases – Redis – SQLite.

Distributed Database Patterns – Consistency Models – Data Models and Storage – Languages and Programming Interfaces – Databases of the Future - Disruptive Database Technologies.

REFERENCES:

1.	Dan Sullivan. NoSQL for Mere Mortals. Addison-Wesley Professional. 2015.
2.	Guy Harrison. Next-Generation Databases. Apress. 2016.

COURSE OUTCOMES:

CO1	Understand how NoSQL databases differ from relational databases from a theoretical perspective.
CO2	Design NoSQL database management systems.
CO3	Select a particular NoSQL database for specific use cases and develop next generation database systems for any application

Course Code	:	CA6B1
Course Title	:	DISTRIBUTED AND CLOUD COMPUTING
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	40
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To explore basic concepts and practices of distributed computing.
CLO2	To understand Cloud Computing concepts, technologies, architecture and applications.
CLO3	To understand different cloud programming platforms and tools to develop and deploy applications on cloud

Course Content

Fundamentals of Distributed Computing – Inter Process Communications – Distributed Computing Paradigms - Distributed Objects

Fundamentals of Parallel Computing – Classification of Parallel Computers – Parallel Computer Architectures – Performance Analysis of Parallel Computing – Parallel Computational Model – Introduction to Parallel Algorithms – OpenMP and CUDA

Introduction to virtualization – Different Approaches to Virtualization – Server – Storage – Network Virtualization – VM Migration – Hypervisors – Case Studies: VMware – KVM – Xen – Containerization

Cloud Computing Properties and Characteristics – Business Drivers for Adopting Cloud Computing – Cloud Computing Architecture – Cloud Computing Service Delivery Models: Infrastructure as a Service (IaaS) – Platform as a Service (PaaS) – Software as a Service(SaaS) Deployment Models: Public cloud – Private cloud – Hybrid cloud – Data Centre Design and Management – Case Studies: Amazon AWS – Microsoft Azure – Amazon EC2 – Google Cloud

Service Level Agreements (SLAs) – Pricing Models of Cloud – Migrating to Cloud – Cloud Simulators – Cloud Security Risks – Emerging Trends in Cloud Computing

REFERENCES:

1.	Kai Hwang, Jack Dongarra, Geoffrey C. Fox, "Distributed and Cloud Computing: From Parallel Processing to the Internet of Things", Morgan Kaufmann, 2013
2.	Rajkumar Buyya, Christian Vecchiola, and Thamarai Selvi, "Mastering Cloud Computing", McGraw Hill, 2017.
3.	Ajit Singh, "Parallel and Distributed Computing", Kindle Version, e-Book, 2021.
4.	Bertil S, Jorge G-D, Christian H and Mortiz S, "Parallel Programming: Concepts and Practice", Morgan Kaufmann, 2018.
5.	Sunita Mahajan and Seema Shah, "Distributed Computing", 2nd Edition, Oxford Press, 2013.
6.	Kai Hwang, Jack Dongarra, Geoffrey C. Fox, "Distributed and Cloud Computing: From Parallel Processing to the Internet of Things", Morgan Kaufmann, 2013

COURSE OUTCOMES:

CO1	Acquire knowledge of the concepts and technologies of distributed and cloud Computing.
CO2	Demonstrate where to apply parallel and distributed techniques.
CO3	Use various performance criteria to evaluate the quality of the cloud architecture.

Course Code	:	CA6B2
Course Title	:	BLOCKCHAIN TECHNOLOGY
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	40
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To understand block chain systems (Bitcoin and Ethereum)
CLO2	To design, build, and deploy smart contracts and distributed applications
CLO3	To integrate ideas from block chain technology into projects

Course Content

Distributed Database – Byzantine General problem and Fault Tolerance – Hadoop Distributed File System – Distributed Hash Table – ASIC resistance – Turing Complete – Cryptography: – Hash function – Digital Signature - ECDSA – Memory Hard Algorithm – Zero Knowledge Proof.

Blockchain Introduction – Advantage over conventional distributed database – Blockchain Network – Mining Mechanism – Distributed Consensus – Merkle Patricia Tree – Gas Limit – Transactions and Fee – Anonymity – Reward – Chain Policy – Life of Blockchain application – Soft & Hard Fork – Private and Public blockchain.

Distributed Consensus – Nakamoto consensus – Proof of Work – Proof of Stake – Proof of Burn – Difficulty Level – Sybil Attack – Energy utilization and alternate.

Cryptocurrency – Distributed Ledger – Bitcoin protocols – Mining strategy and rewards – Ethereum – Construction – DAO – Smart Contract – GHOST – Vulnerability – Attacks – Sidechain – Namecoin.

Cryptocurrency Regulation – Stakeholders – Roots of Bit coin – Legal Aspects-Crypto currency Exchange – Black Market and Global Economy – Applications: – Internet of Things – Medical Record Management System – Domain Name Service and future of Blockchain

REFERENCES:

1.	Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven Goldfeder,
	Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction, Princeton University
	Press (2016).
2.	Bashir Imran, Mastering Blockchain: Deeper insights into decentralization, cryptography, Bitcoin,
	and popular Blockchain frameworks, Packt Publishing; 1st edition, 2017.

COURSE OUTCOMES:

CO1	Explain design principles of Bitcoin and Ethereum.
CO2	Explain the Simplified Payment Verification protocol.
CO3	Interact with a block chain system by sending and reading transactions.
CO4	Design, build, and deploy a distributed application.

Course Code	:	CA6B3
Course Title	:	COGNITIVE SCIENCES
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	40
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To understand the structure, features and functions of brain
CLO2	To know about brain's ability to understand symbols, visuals, language and communication
CLO3	To understand the algorithms used in information processing at various levels involving thinking process.
CLO4	To model artificial intelligent systems involving cognitive aspects

Course Content

Behaviourism in Psychology – Cognitive Maps – Plans and Complex Behaviors – Algorithms and Turing Machines – Linguistics and the Formal Analysis of Language – Information-Processing Models in Psychology – Flow of Information – Role of Auditory Localization in Attention and Memory Span – Perception and Communication – Language and Micro-worlds – Mental Imagery – Cognitive Systems as Functional Systems – Anatomy of the Brain and the Primary Visual Pathway – Extending Computational Modeling to the Brain – Mapping the Stages of Lexical Processing – Tomographic Studies of the Cortical Anatomy of Single Word Processing – Studying Memory for Visual Events – Functional Neuroimaging with fMRI.

Symbols and Symbol Systems – Transforming Symbol Structures – Intelligent Action and the Physical Symbol System – Neurally Inspired Models of Information Processing -Neurons and Network Units – Single-Layer Networks and Boolean Functions – Learning in Single-Layer Networks: The Perceptron Convergence Rule - Linear Separability and the Limits of Perceptron Convergence - Multilayer Networks – Backpropagation Algorithm – Information Processing in Neural Networks.

Dynamical Systems – Hypothesis – Motor Control – A-Not-B Error – Bayesianism – Perception as a Bayesian Problem – Architectures for Artificial Agents – Hybrid Architectures: Example of ACT-R – Structure and Function in the Brain – Exploring Anatomical Connectivity – Studying Cognitive Functioning Techniques – Mapping the Brain's Electrical Activity – Locus of Selection Problem – Networks for Attention – Visuospatial Attention – From Data to Maps.

Models of Language Learning – Language and Rules – Understanding a Language and Learning a Language – Language Learning in Neural Networks – Bayesian Language Learning Probabilities in Word and Phrase Segmentation - Understanding Pronouns - Learning Linguistic Categories – Object Permanence and Physical Reasoning in Infancy – Modeling Object Permanence – Modeling the Balance Beam Problem.

Expert Systems and Machine Learning – Robotics: From GOFAI to Situated Cognition and Behavior-Based Robotics - Subsumption Architecture – Multiagent Programming – Neural Prosthetics – Cognitive Science and the Law – Autonomous Vehicles – Combining Deep Learning and Intuitive Knowledge.

REFERENCES:

1.	Jose Luis Bermudez, "Cognitive Science: An Introduction to the Science of the Mind", Cambridge
	University Press, 2014.
2.	Richard Passingham, "Cognitive Neuroscience : A Very Short Introduction", Oxford University
	Press, 2016.
3.	Alfonzo Doyle, "Advances in Cognitive Science", Excelic Press, 2019.

COURSE OUTCOMES:

CO1	Understand the brain and its role in Cognitive Science
CO2	Correlate symbolic structures with cognitive functions
CO3	Know the principles behind dynamical systems in cognitive related functions
CO4	Design systems involving cognitive features using intelligent techniques

SEMESTER – II: ELECTIVES

Course Code	:	CA6C1
Course Title	:	DEVOPS
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	50
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

Course Learning Objectives (CLO)

CLO1	To learn the rise of agile methodologies
CLO2	To define and design purpose and applications of DevOps

Course Content

Rise of Agile Methodologies: The Advent of Software Engineering - Waterfall method -Developers vs IT Operations conflict - Agile Vs Waterfall Method - Iterative Agile Software Development - Individual and team interactions over processes and tools – Working software over -comprehensive documentation - Customer collaboration over contract negotiation -Responding to change over following a plan

Basics of DevOps: Introduction to DevOps - DevOps and Agile - Minimum Viable Product - Application Deployment - Continuous Integration - Continuous Delivery

CAMS (Culture, Automation, Measurement, And Sharing): CAMS – Culture - CAMS – Automation - CAMS – Measurement - CAMS – Sharing - Test-Driven Development -Configuration Management - Infrastructure Automation - Root Cause Analysis – Blamelessness - Organizational Learning

Continuous Delivery and Continuous Integration: Rebase frequently from the mainline - Checkin frequently - Frequent build – Automate the testing as much as possible - Automate the deployment - Development operations - Use a version control system - Use repository tools - Use a Continuous Integration tool - Automate the packaging - Automating the deployments -Automating the testing

Applied Devops: DevOps Tools and Platforms - Real World Applications of DevOps - DevOps Practical Examples - Case Studies

REFERENCES:

1.	Gene Kim, Jez Humble, Patrick Debois, John Willis and Nicole Forsgren, The DevOps Handbook,
	IT Revolution Press. 2021
2.	Paul Swartout, Continuous Delivery and DevOps A Quickstart Guide, Packt Publishing Limited
	2018
3.	Len Bass, Ingo Weber, Liming Zhu, DevOps: A Software Architect's Perspective Addison-
	Wesley. 2015

COURSE OUTCOMES:

CO1	Understand the principles of Agile Methodologies
CO2	Differentiate application deployment, continuous integration and continuous delivery
CO3	Acquire knowledge in CAMS based development
CO4	Develop real world problems using tools and platforms

Course Code	:	CA6C2
Course Title	:	ANALYTICS FOR STRATEGIC MARKET PLANNING
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	50
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1 To build marketing response models for strategic marketing decisions

Course Content

Marketing Analytics: Basics of marketing analytics - marketing decisions models - characteristics - types and benefits of marketing decisions models - Response models - types - calibration - objectives - interactions effects - dynamic effects - competitive effects - models in individual levels - shared experience and qualitative models.

Segmentation and Targeting: The segmentation process and defining the market with models -Segmentation research - methods using factors analysis and cluster analysis - behaviour-based segmentation: cross classification - regression and choice-based segmentation - customer heterogeneity- issues and challenges.

Positioning: Differentiation and positioning - perceptual maps: developing perceptual map – multi dimensional scaling - techniques – attribute based and similarity based - joint space mapping.

Strategic Market Analysis: Strategic marketing decisions - market demand and trend analysis - product life cycle - cost dynamics: scale and experience effects.

Models for Strategic Decision Making: Market entry and exit decisions - PIMS: shared experience models - product portfolio models: BCG - GE etc. - financial models - analytical hierarchy process.

REFERENCE(S):

1. Lilien, Gary L. and Arvind Rangaswamy, *Marketing Engineering: Computer-Assisted Marketing Analysis and Planning*. Revised Second Edition, Trafford Publishing, 2004

COURSE OUTCOMES:

At the end of the course, students will be able to:

CO1	Take data empowered strategic marketing decisions by using analytical techniques.
CO2	Sharpen their analytical skills by getting exposure to computer-based marketing models and tools for decision making

Course Code	:	CA6C3
Course Title	:	FINANCIAL RISK ANALYTICS AND MANAGEMENT
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	50
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

Course Learning Objectives (CLO)

CLO1	To identify the different risks involved in Finance arena.
CLO2	To understand and solve the different risks pertaining to the stock market and its instruments.
CLO3	To analyse the legal issues affecting the business

Course Content

Introduction to Risk: Understanding Risk - Nature of Risk - Source of Risk - Need for risk management - Benefits of Risk Management - Risk Management approaches - Risk Classification - Credit risk - Market risk - Operational Risk and Other Risk

Risk Measurements: Measurement of Risk – Credit Risk Measurement - Market Risk Measurement - Interest Rate Risk Measurement - Asset Liability Management - Measurement of Operational Risk

Risk Management: Managing Credit Risk - Managing Operational Risk - Managing Market Risk.

Risk in Instruments: Tools for Risk Management – Derivatives - Combinations of Derivative Instruments - Neutral and Volatile Strategies - Credit Derivatives - Credit Ratings - Swaps.

Regulation and Other Issues: Other Issues in Risk Management - Regulatory Framework - Basel Committee - Legal Issues - Accounting Issues - Tax Issues - MIS and Reporting - Integrated Risk Management.

REFERENCES:

1.	Dun, Bradstreet, "Financial Risk Management", TMH, 2006.
2.	John C Hull, "Risk Management and Financial Institutions", Pearson, 2015.
3.	Aswath Damodharan, "Strategic Risk Taking", Pearson, 2008.

COURSE OUTCOMES:

CO1	Identify and categorize the various risks faced by an organization.
CO2	Explore the tools and practices needed to assess and evaluate financial risks.
CO3	Explore risk management practices in an industry.
CO4	Identify and solve legal issues that impact financial and other risk affecting business

Course Code	:	CA6D1
Course Title	:	DATA VISUALIZATION
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	50
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To introduce students with fundamental concepts, approaches, and applications of data visualization
CLO2	To familiarize students with different visualization and analytic tools and techniques
CLO3	To develop skills and competencies required by the professionals

Course Content

Data – Perception and Data Visualization – Graphical Excellence – Data Maps – Time-Series – Graphics of Space and Time – Graphical Integrity – Distortion in a Data Graphic – Design and Data Variation – Visual Area and Numerical Measure

Data-Ink and Graphical Redesign – Data-Ink – Maximizing the Share of Data-Ink – Two Erasing Principles – Application of the Principles in Editing and Redesign - Data-Ink Maximization and Graphical Design – Redesign of Box Plot – Histograms and Scatterplot – Data Density

Visualizing Amounts – Bar Plots – Grouped and Stacked Bars – Dot Plots and Heatmaps -Visualizing Distributions – Histograms and Density Plots – Q-Q Plots – Skewed Distributions -Visualizing Proportions – Pie Charts - Visualizing Time Series – Individual Time Series – Multiple Time Series – Time Series with Multiple Response Variables

Mapping – Connections and correlations – Multivariate Analysis – Scatterplot Maps – Trees – Hierarchies and Recursion – Networks and Graphs

Visual Analytics – Visual Analytics vs Data Visualization – Visual Analytics Process – Visual Analytics Applications – Case Studies - Python Data Visualization Libraries – Tableau

REFERENCES:

1.	Edward R. Tufte, The Visual Display of Quantitative Information, 2 nd edition, Graphics Press, 2007
2.	Claus O. Wilke, Fundamentals of Data Visualization, O'Reilly, 2019
3.	Ben Fry, Visualizing Data: Exploring and Explaining Data with the Processing Environment, O'reilly, 1 st edition, 2008
4.	A. Kerren, J. T. Stasko, J. Fekete, C. North, Information Visualization, Springer, 2008
5.	Alex Campbell, Data Visualization: Ultimate Guide to Data Mining and Visualization, 2020
6.	A. Loth, Visual Analytics with Tableau, Willey, 2019
7.	Kieran Healy, Data Visualization: A Practical Introduction, Princeton University Press, 2018
8.	Alexandru C. Telea, Data Visualization: Principles and Practice, Second Edition, CRC Press, 2015

COURSE OUTCOMES:

CO1	Understand and apply the fundamental design principles of data visualization
CO2	Present data by applying different data visualization techniques for better communication
CO3	Analyse data and communicate information through visual representation
CO4	Identify and solve legal issues that impact financial and other risk affecting business

Course Code	:	CA6D2
Course Title	:	PATTERN RECOGNITION
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	50
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To develop the mathematical tools required for the pattern recognition.
CLO2	To learn about supervised and unsupervised pattern classifiers.
CLO3	To familiarize about different feature extraction techniques

Course Content

Basics of Probability – Random Processes and Linear Algebra – Probability – independence of events – conditional and joint probability – Bayes' theorem - Random Processes – Stationary and nonstationary processes – Expectation – Autocorrelation – Cross-Correlation – spectra; Linear Algebra – Inner product – outer product – inverses – Eigen values – Eigen vectors–Bayes Decision Theory.

Bayes Decision Theory – Minimum-error rate classification – Classifiers – Discriminant functions – Decision surfaces – Normal density and discriminant functions – discrete features Parameter Estimation Methods – Maximum-Likelihood estimation: Gaussian case – Maximum a Posteriori estimation– Bayesian estimation - Gaussian case.

Unsupervised learning and clustering – Criterion functions for clustering – Algorithms for clustering – K-Means – Hierarchical and other methods – Cluster validation – Gaussian mixture models – Expectation– Maximization method for parameter estimation – Maximum entropy estimation.

Sequential Pattern Recognition – Hidden Markov Models (HMMs) – Discrete HMMs -Continuous HMMs – Nonparametric techniques for density estimation – Parzen-window method – K-Nearest Neighbour method

Dimensionality reduction – Fisher discriminant analysis – Principal component analysis – Factor Analysis – Linear discriminant functions – Gradient descent procedures – Perceptron – Support vector machines.

REFERENCES:

1.	S.Theodoridis and K.Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2009
2.	R.O.Duda, P.E.Hart and D.G.Stork, Pattern Classification, John Wiley, 2001
3.	C.M.Bishop, Pattern Recognition and Machine Learning, Springer, 2006
4.	P.A. Devijer & J. Kittler, Pattern Recognition - A Statistical Approach, Prentice-Hall.
5.	Christopher. M. Bishop, 'Pattern recognition and machine learning, Springer, 2006.

COURSE OUTCOMES:

CO1	Summarize the various techniques involved in pattern recognition
CO2	Categorize the various pattern recognition techniques into supervised and unsupervised.
CO3	Illustrate the artificial neural network-based pattern recognition
CO4	Discuss the applications of pattern recognition in various applications

Course Code	:	CA6D3
Course Title	:	NATURAL LANGUAGE PROCESSING
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	50
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To introduce language processing techniques to enable Text data processing
CLO2	To impart knowledge on text processing using Statistical and Machine learning models
CLO3	To describe various Embedding's techniques and Deep learning models for NLP
CLO4	To introduce real world applications of Language processing

Course Content

Natural Language Processing– Applications of NLP – NLP tasks and Ambiguities in tasks -Regular Expressions - Edit Distance algorithm - Text Pre-processing –Morphological Analysis – Part of speech tagging – Shallow parsing – Dependency parsing- Lexical Semantics-Co-reference Resolution

Language model – n-gram language models – Hidden Markov Model – Conditional random Fields – Topic models. Machine Learning for NLP – Language Features – Maximum Entropy Classifier – Phrase Based clustering.

Deep Learning for NLP - Neural Networks – Vector Representations – Distributional Semantics-Word Embedding's – Encoder Decoder Architecture- Sequence to Sequence models - Attention – Transformers–Tool: PyTorch

Multilingual Models-Natural Language Generation- Large Language models – Prompting- In-Context Learning- Instruct Tuning - Scaling Laws - Retrieval Augmented Generation

Applications and Case Studies – Question Answering – Machine Translation – Dialogue systems

REFERENCES:

1.	Daniel Jurfsky, James H. Martin Speech and Language Processing: An Introduction to Natural
	Language Processing, Computational Linguistics and Speech Recognition, Second Edition,
	Pearson 2013
2.	Christopher D. Manning and Hinrich Schutze, "Foundations of Statistical Natural Language
	Processing", MIT Press, 1999.
3.	Anders Søgaard, Ivan Vulić, Sebastian Ruder, Manaal Faruqui, Cross-Lingual Word Embeddings
	(Synthesis Lectures on Human Language Technologies), Morgan & Claypool Publishers, 2019
4.	Delip Rao, Brian McMahan, Natural Language Processing with PyTorch: Build Intelligent
	Language Applications Using Deep Learning, O'Reilly, 2019
5.	Lewis Tunstall, Leandro von Werra, Thomas Wolf, Natural Language Processing with
	Transformers, O'Reilly Media, Inc.,2022
6.	Jay Alammar, Maarten Grootendorst, Hands-On Large Language Models, O'Reilly Media,
	Inc.,2024

COURSE OUTCOMES:

CO1	Identify the patterns in text and pre-process the large text corpus
CO2	Use classical model for NLP
CO3	Adopt embedding and Deep learning models in NLP
CO4	Apply the NLP concepts for solving the Applications

Course Code	:	CA6E1
Course Title	:	WEB ANALYTICS
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	40
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To know the methodologies for collecting, reporting and analysis of website data
CLO2	To understand various analysis associated with website and web usage data
CLO3	To understand the features of Web Analytics to improve the business in the web, mobile and cloud domains

Course Content

Web Analytics Approach – Know about web site – Gather Data – Transform – Balancing Time and the Need for Certainty – Context; How Web Analytics Works – Log File Analysis – Page Tagging – Cookies – Accuracy – Accounts and Profiles – Click Analytics – Metrics and Dimensions – Interacting With Data In Google Analytics – Goals and Conversions – Conversion Rate – Goal Reports – Performance Indicators.

Learning about Users – Visitor Analysis – Demographics – Behaviour – Technology – Mobile – Custom based – Traffic Analysis – Source and Medium (Dimensions) – Organic Search – Search Query Analysis – Referral and Direct Traffic – Content Usage Analysis – Website Content Reports – Page views – Low and High Time – Page views Ratio Bounce rate – Page Value – Click – Path Analysis – Relationships between Pages – Navigation Summary – Visitors Flow – Examples.

Segmentation – Google Analytics' Advanced Segments – AND – OR – and Sequence of Filters – Metrics – Dimensions – Based on Page – User Traits – Information need – User's Goal Completion – Page Related Landing and Viewing – Pairing Analytics Data with UX Methods – Personas – Usability Testing and Inspection – Measuring Effects of Changes –

Reframe as a Rate – Types of Changes – Conversion Rate – Redirect Traffic – Page Time – Other Continuous Metrics – Reporting.

Measuring Behavior within pages – Google In – Page Analytics – Measurable Clicks – Analytics Tools – Event Data Analysis – Virtual Page Views – A/B Testing – Analytics Profiles – Filters – Reporting Culture – Making Case for Usability Activities – Design Changes – User Research – Mobile Application Analytics – Cross – Device Measurement – On Page Behavior – Connecting to other data sources – Google Analytics – E – Commerce Tracking – Online Campaign Tracking – Event Tracking – Customizing GATC – Hacks – Methodologies.

Google Tag Managers – Building blocks – Enhancing websites with Tag Manager – Using Google Analytics with BigQuery – Tag Manager and Analytics APIs.

REFERENCES:

1.	Michael Beasley, "Practical Web Analytics for User Experience", Elsevier, 2013
2.	Beatriz Plaza "Advanced Web Metrics with Google Analytics", Koros Press, 2017
3.	Todd Kelsey, "Introduction to Google Analytics: A Guide for Absolute Beginners", Apress, 2017.
4.	Jonathan Weber et al., "Practical Google Analytics and Google Tag Manager for Developers", Apress, 2015

COURSE OUTCOMES:

CO1	Understand the factors influencing the business through the web site data
CO2	Understand various types of analysis involved in web site data (users, business data, etc.)
CO3	Practice applying Google Analytics APIs to improve the business
CO4	Understand the factors influencing the business through the web site data

Course Code	:	CA6E2
Course Title	:	FEDERATED LEARNING
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	40
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To know the basics of federated learning.
CLO2	To learn the applications of federated learning
CLO3	To know the privacy preserving deep learning

Course Content

Introduction to Federated Learning – Privacy Preserving – Distributed Machine Learning – Threats to Federated Learning – Data Valuation.

Horizontal Federated Learning – Vertical Federated Learning and Federated Transfer Learning.

Federated Optimization for Heterogeneous Networks – Deep Networks from Decentralized Data – Federated Multi-task Learning – Personalized Federated Learning.

Federated Learning Applications: Recommendation in Health Care and Finance - Mobile Keyboard Prediction – Learning of Out-of-vocabulary Words.

Adaptive Personalized Federated Learning – Privacy Preserving Deep Learning – Advances and Open Problems.

REFERENCES:

1.	Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, Han Yu, Federated Learning,
	Morgan & Claypool Publishers, 2019.
2.	Kim-Kwang Raymond Choo, Ali Dehghantanha, Handbook of Big Data Privacy, Springer
	Nature Switzerland, 2020

COURSE OUTCOMES:

At the end of the course, students will be able to

CO1	Knowledge of the basic concepts, architecture and applications of Federated Learning.
CO2	Understanding of new research and application trends in Federated Learning.
CO3	Ability to deploy real-world Federated Learning projects.
CO4	Hands-on experience in applying Federated Learning tools to solve privacy-preserving AI challenges

Course Code	:	CA6E3
Course Title	-	HUMAN RESOURCE ANALYTICS
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	40
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

Course Learning Objectives (CLO)

CLO1 To provide the knowledge on various frameworks and hands-on analytical approaches for identifying the business contributions of the HR function in the organizations

Course Content

Introduction to HR Analytics: Overview of HR Process - HR Analytics – An overview - Role of analytics in HR – HRM in changing context - Transition from transaction orientation to analytics orientation - HR Analytics Framework – People Capability Maturity Model – LAMP framework – HCM 21 framework – Talent analytics maturity model.

Organization-Wide Alignment Analytics: Alignment Analytics – link HR process and organization process - identify alignment opportunities; Human Capital Strategy - HR Alignment Inventory - workforce planning - Measurement Map – Lead and Lag indicators.

HR Metrics and Audits: Formulation of key performance indicators and key result areas; HR Metrics – Recruitment metrics – Training and development metrics - Talent retention metrics – HR

cost benefit metrics – Career Progression Metrics - Performance metrics – Diversity and Inclusion Metrics - Human capital ROI - Designing and Implementing HR Scorecard - Conducting HR Practice Audits

Descriptive Analytics: Descriptive Analytics – Exploring the people data – slice and dice of data – HR Dashboards - Segmentation - Business Insights - KPI Catalogue Creation.

Predictive and Prescriptive Analytics: Predicting future performance - Techniques to capture the fallouts of HR Practices – Data driven decision making - Organization change and improvement.

REFERENCES:

1.	Bassi, Laurie Jo, Rob Carpenter, and Dan McMurrer. HR analytics handbook. Reed			
	Business. 2010.			
2.	Fitz-Enz, Jac. The New HR Analytic. Predicting the Economic Value of Your			
	Company's Human Capital Investments. American Management Association. 2010			

COURSE OUTCOMES:

CO1	Identify necessary skills to carry out the personnel roles in the domain of HR.
CO2	Identify skilled personnel and job tasks to achieve mission-critical goals.
CO3	Align organization's mission and goals with key metrics and benchmarks.
CO4	Apply HR analytics to improve organizational performance by providing better insights on
	human resources data.

Course Code	:	CA6F1
Course Title	:	INTELLIGENT SYSTEMS AND PROCESS AUTOMATION
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	40
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	
	To know about AI and problem solving techniques
CLO2	
	To understand various search techniques and knowledge representation schemes
CLO3	
	To learn the concepts and working principles of RPA
CLO4	
	To gain knowledge in RPA related tools, technologies and services

Course Content

Introduction to AI – Problem Solving by Search - Tree Based – Graph based – Breadth First – Depth First – Backtracking – Depth Bounded – Iterative Deepening – Branch and Bound – Bidirectional Search – Heuristic Search – Iterative Search – MIN-MAX – Alpha Beta Pruning

Knowledge Representation and Reasoning – Propositional Logic – FOPL – Rule Based Systems – Chaining Systems – Expert Systems – Managing Uncertainty in Rule Based Systems – Fuzzy Expert Systems

History of Automation - RPA vs Automation - Processes & Flowcharts - Programming Constructs in RPA - What Processes can be Automated - Types of Bots - Workloads which can be automated - RPA Advanced Concepts - Standardization of processes - RPA Development methodologies - Difference from SDLC - Robotic control flow architecture - RPA business case - RPA Team - Process Design Document/Solution Design Document - Industries best suited for RPA - Risks & Challenges with RPA - RPA and Emerging Ecosystem

Introduction to RPA Tool - The User Interface - Variables - Control Flow - - The Assign Activity - The Delay Activity - The Do While Activity - Data Manipulation - Gathering and Assembling Data

Recording Introduction - Web Recording – Input / Output Methods - Screen Scraping -Data Scraping - Scraping advanced techniques - Selectors - Image, Text & Advanced Citrix Automation - Excel Data Tables & PDF - Data Tables in RPA – Extracting Data from PDF -Anchors - Handling User Events & Assistant Bots - Exception Handling – Triggers –

Debugging.- Deploying And Maintaining The Bot -Publishing - Creation of Server - Using Server to control the bots - - Connecting a Robot to Server - Deploy the Robot to Server - Managing packages.

REFERENCES:

1.	Crina Grosan and Ajith Abraham, "Intelligent Systems – A Modern Approach", Springer, 2011.
2.	Tom Taulli, "The Robotic Process Automation Handbook", Apress, 2020.
3.	Alok Mani Tripathi, "Learning Robotic Process Automation", Packt, 2018.
4.	Husan Mahey, "Robotic Process Automation with Automation Anywhere", Packt, 2020

COURSE OUTCOMES:

CO1	Understand the Significance of AI and various techniques used in intelligent applications.
CO2	Apply basic principles of Expert systems and their fundamentals, and learning.
CO3	Understand the RPA and various platforms available.
CO4	To show the importance of RPA in solving real world problems

Course Code	:	CA6F2
Course Title	:	SOCIAL NETWORK ANALYTICS
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	40
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1	To enable students to understand and visualize the social network structure.
CLO2	To impart knowledge on mining the user link structure in the social network.
CLO3	To enable students to analyse the social network content

Course Content

Introduction – Properties of Social Networks – Network Analysis – Network Measures – Discussion Networks – Blogs and Online Communities – Semantic Web

Modeling and Visualization – Visualizing Social Networks – Graph Representation – Node-Edge Diagrams – Modelling and Aggregating Social Network Data – Random Walks – Tools: NetworkX – SocioViz – NetworkKit – Infinite Graph

Mining Communities – Aggregating and Reasoning with Social Network Data – Detecting Communities in Social Networks – Evaluating Communities – Community Welfare – Collaboration networks – Co-Citation Networks - Link Prediction – Rank Aggregation and Voting Theory – Tools: Ghephi – Neo4J – Mathematica

Semantic Web – Resource Description Framework – Linked Open Data – Ontological Representation of Social Individuals and Relations – Entity Linking – Entity Resolution – Graph based Event Detection

Social Media Content Analytics – Text Mining in Social Networks – Opinion Extraction – Sentiment Classification and Clustering – Irony Detection – Review Classification – Recommendation Systems – Hashtags – Information Diffusion

REFERENCES:

1.	Matthew A. Russell. Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn,
	Google+, GitHub, and More, 3nd Edition, O'Reilly Media, 2019.
2.	Jennifer Golbeck, Analyzing the social web, Morgan Kaufmann, 2013.
3.	GuandongXu, Yanchun Zhang and Lin Li, Web Mining and Social Networking – Techniques and applications, 1st edition, Springer, 2011.
4.	BorkoFurht, Handbook of Social Network Technologies and Applications, 1st edition, Springer, 2010.
5.	John G. Breslin, Alexander Passant and Stefan Decker, The Social Semantic Web, Springer, 2009

COURSE OUTCOMES:

CO1	Interpret the social network structure
CO2	Model and visualize the social network.
CO3	Mine the user relations in the social network.
CO4	Analyze social network content

Course Code	:	CA6F3
Course Title	:	SUPPLY CHAIN ANALYTICS
Type of Course	:	PE
Prerequisites	:	NIL
Contact Hours	:	40
Course Assessment	:	Continuous Assessment, End Assessment
Methods		

CLO1 To provide the knowledge and necessary skills for carrying out job roles in the domain of Supply chain analytics

Course Content

Demand Planning: Demand Planning- Review of Forecasting and planning concepts - Defining KPIs- Forecasting Model Building - Discrete and continuous manufacturing

Supply planning: Supply planning - Procurement and Strategic Sourcing - Inventory Modelling – aggregate planning and resource allocation decisions - Procurement Analytics - Production modelling

Demand Fulfilment: Demand Fulfilment - DC location and network design - optimizing inventory levels in distribution network - Logistics & Network Modelling - Transportation modelling - delayed differentiation - mass customization

Integrated supply chain: Advanced and business supply chain related topics like CPFR - DDSN - Make/Buy Case Study - Total Supply Chain Cost - computation of transfer prices - revenue management-yield management - product changes/economies of scale

Project Development: Undertaking projects with industry inputs- validation of models – frameworks – Review of data analytics techniques - choice of tools and designing solution approach to specific applications

REFERENCES:

1.	Raman, and Imp	A rovin	& g Pe	Fisher, erformanc	М., e, НВ	Ho S Pre	<i>w Analytic</i> ess. 2010.	:s 1	Are	Transfo	orming	the	Supply	Chain
2.	Tayur, Supply C	S. Chain	Ga Mar	neshan, nagement	R. . Kluv	& wer A	Michael, cademic Pu	M. blish	(edi ners. 1	itors). 999.	Quant	itative	Model	's for

COURSE OUTCOMES:

CO1	Understand the concepts of supply chain analytics.
CO2	Apply various supply chain management concepts.
CO3	Improve an existing supply chain and design an efficient supply chain in alignment with the strategic goals of the company