Laser Flash Apparatus (LFA)

Manufacturer: NETZSCH Instruments North America, LLC

Model: LFA467 Hyperflash

Application: For the measurement of thermal diffusivity

Technical Data:

Temperature range	RT up to 500 °C					
Heating rate (max.)	50 K/min (Steel furnace)					
Cooling devices	CC 200 F3 (liquid nitrogen cooling): -100 °C to 500					
	°C, software controlled					
	CC 300 (liquid nitrogen cooling): -100 °C to 500 °C;					
	optionally with liquid nitrogen refilling, software					
	controlled, level monitoring					
Thermal diffusivity	0.01 mm2 /s up to 1000 mm2 /s					
Thermal conductivity	$0.1 \text{ W/(m \cdot K)}$ up to 2000 W/(m \cdot K)					
Accuracy	Thermal diffusivity: ± 3 %					
	Specific heat: $\pm 5 \%$					

Repeatability	Thermal diffusivity: ± 2 %					
	Specific heat: $\pm 3\%$					
Xenon flash lamp	Software-controlled, variable Pulse width: 20 up to					
	1200 µs					
ZoomOptics	Optimized field of view					
Pulse mapping	Patented pulse mapping (US7038209,					
	US20040079886, DE 10242741), for finite pulse					
	correction and improved cp-determination					
IR detector	- InSb: RT up to 500 °C					
	- MCT (Hg-Cd-Te): -100 °C to 500 °C					
	Detector is equipped with a 0,5-litre Dewar, Operating					
	time (manufacturer's specification) up to 24 h					
Atmosphere	Inert, oxidizing, static und dynamic					
Data acquisition	2 MHz Up to 40.000 measuring points; for detector					
	and pulse signal each					
Gas control	MFC (2x purge gas, 1x protective gas), internal pump					
	for AutoVac					
Integrated automatic	4 inserts for up to 16 samples (4 x Ømax. 25.4 mm, 16					
sample changer	x Ømax. 12.7 mm, round or square)					
Sample Holders	For special applications such as molten polymers and					
	low viscosity liquids, resins during curing, pastes,					
	powders, fibers, laminates, inplane tests or tests under					
	mechanical pressure					
Line voltage	230 V / 115 V; 50 Hz / 60 Hz; max. 1150 VA					
	(measuring unit)					
Vacuum	< 150 mbar					
Location requirements	Closed room (laboratory)					
	Ambient temperature 20 °C +/- 5 °C					
	Relative humidity 60% +/- 20%					
	Atmospheric pressure 1013 hPa +/- 30 hPa or max.					
	2000 m					
D	Distance to wall min. 30 cm					
Data acquisition	2 MHz					
	Min. measurement time (10 half times) down to 1					
	ms \rightarrow for highly conducting and/or thin samples					
	(e.g., AI, Cu plates, thin films, etc.)					
	Wax. measurement time up to $120 \text{ s} \rightarrow \text{Ior Iow}$					
	refractories atc.)					
Sampla haldara	For round samples					
sample noiders	roi iouna sampies					

For liquids, pastes, resins, powders, fibers,
laminates, anisotropic samples
For tests under mechanical pressure

Sample Preparation:

Sample Diameter: 1 inch

Sample Thickness: It is important to use a sample with flat and parallel faces in order to record an accurate value for the sample thickness.

The optimum sample thickness depends on the diffusivity (α) of the material.

The table below indicates recommended thickness for different diffusivity values according to the material respectively to the templates used in the software.

Material / Template	Thermal diff (mm²/s)	usivity	Recommended this (mm)	ckness
low thermal diffusivity polymers	0.5		1 - 1.5	
medium thermal diffusivity ceramics	5		1.5 - 2	
high thermal diffusivity metals	50		2 – 3	